A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees

» red-black BSTs

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

The story so far

Symbol table / dictionary / map is a fundamental data type
Naive implementations (arrays/linked lists) are way too slow.

(Binary) search trees work well in the average case, but can grow too tall
(imbalanced) in the worst case

How to balance search trees?

dictionary find definition word definition
book index find relevant pages term list of page numbers
file share find song to download name of song computer ID
typical case o _ | _
worst case financial account process transactions account number transaction details
web search find relevant web pages keyword list of page names
compiler find properties of variables variable name type and value
routing table route Internet packets destination best route
DNS find IP address domain name IP address
reverse DNS find domain name IP address domain name
genomics find markers DNA string known positions
file system find file on disk filename location on disk

Symbol table review

guarantee average case
ordered key

implementation :
ops? interface
search delete delete

sequential search

equals
(unordered list) " " n 2 n n q O
binary search
v compareTlo
(ordered array) g i " i log n n n p O
BST n n n log n log n Vn v compareTo()

goal log n log n log n log n v compareTo()

Challenge. Guarantee performance. T far (meliing e cedie:
/ introduced to the world in this course!

This lecture. 2-3 trees and left-leaning red-black BSTs.
T~ co-invented by Bob Sedgewick

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
« 2-node: one key, two children.
« 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

@ how to maintain?

3-node 2-node
smaller than E E J e
\ larger than J

OO CING
AN

between E and J null link

2-3 tree demo

Search.

« Compare search key against key(s) in node.
« Find interval containing search key. @

- Follow associated link (recursively).

search for H

O
E) (R)

SOOI

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for H H is less than M

(go left)

PO
E) (R)

SOOI

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for H

H is between E and J

(M,
(go middle)
H (E | (R)

SOOI

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for H

O
E) (R)

GG u@ Dy OR

found H
(search hit)

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for B B is less than M

(go left)

PO
E) (R)

SOOI

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for B

B is less than E

(M
(go left)
8 (E (R)

SOOI

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for B

O
E) (R)

B is between A and C
(go middle)

S ENOIROINONRGS

2-3 tree demo: search

Search.
« Compare search key against key(s) in node.
« Find interval containing search key.
« Follow associated link (recursively).

search for B

O
E) (R)

OO

B

link is null
(search miss)

2-3 tree: Insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G

14

2-3 tree: Insertion

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert Z

15

2-3 tree construction demo

insert S

16

2-3 tree construction demo

2-3 tree

17

Balanced search trees: quiz 1

What is the maximum height of a 2-3 tree with n keys?

A. ~log; n
B. ~log, n
C. ~2log,n
D.

~nNn

18

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
« Worst case: Ign. [all 2-nodes]
- Best case: logzn =.6311gn. [all 3-nodes]
« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

19

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
delete delete

sequential search

(unordered list) " " " " " " equals()
(::‘ZZ:Z:ZE:‘:;I;) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()
2-3 tree log n log n log n log n log n log n v compareTo()

but hidden constant c is large
(depends upon implementation)

20

2-3 tree: implementation?

Direct implementation is complicated, because:

« Maintaining multiple node types is cumbersome.

« Need multiple compares to move down tree.
« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

Bottom line. Could do it, but there’s a better way.

21

3.3 BALANCED SEARCH TREES

» red-black BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from two 2-nodes.

« Can’t (uniquely) map from BST back to 2-3 tree.

Approach 2. Regular BST with red “glue” nodes.
« Wastes space for extra node.
« Messy code.

Approach 3. Regular BST with red “glue” links.
« Widely used in practice.
« Arbitrary restriction: red links lean left.

&

23

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

2-3 tree
3-node
less between greater
than a aandb than b
horizontal red links red links “glue”

larger key is root

/nodes within a 3-node

red—black tree /(\
greater

an b
less between th

than a aandb

24

Balanced search trees: quiz 2

Which LLRB tree corresponds to the following 2-3 tree?

EJ

oENGRE

C. Both A and B.

D. Neither A nor B.

25

An equivalent definition of LLRB trees (without reference to 2-3 trees)

— symmetric order
A BST such that:

« No node has two red links connected to it. | -
color invariants
« Red links lean left.

« Every path from root to null link has the same number of black links.

N\

“perfect black balance”

26

Balanced search trees: quiz 3

Which one of the following is a red-black BST?

27

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster

(because of better balance)

public Value get(Key key)

{
Node X = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Remark. Many other ops (floor, iteration, rank, selection) are also identical.

28

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =
can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
: h
private class Node h.left.color 4 h.right.color
{ ks RED ™ (E _ is BLACK
Key key; G o
Value val; Q @ @

Node Teft, right;
boolean color;

}

private boolean isRed(Node x)

{

if (x == null) return false;
return x.color == RED; \\

null links are black

29

Review: the road to Left Leaning Red Black Trees

BSTs
Can get imbalanced

(AR (H) (D) (P (S)(X;

Imagine 3-nodes held together by internal
glue links shown in red

2-3 trees
Balanced but cumbersome

How we represent LLRB trees in code

30

Plan for rest of this lecture

LLRB search. Same as BST search; see above.
LLRB insert. Rest of this lecture.
LLRB delete. Tricky; see book.

LLRB operations.
« Insert requires operations called rotations and color flips.
« Derived via 1-1 correspondence with 2-3 tree operations
(temporarily creating and splitting a 4-node)

Learning strategy.

We’ll omit the correspondence to 2-3 trees in the rest of the lecture
and learn the LLRB operations directly.

31

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.
During internal operations, maintain:
« Symmetric order.

« Perfect black balance. [but not necessarily color invariants]

Examples of violations of color invariants:

right-leaning two red children left-left red left-right red
red link (a temporary 4-node) (a temporary 4-node) (a temporary 4-node)

To restore color invariant: apply rotations and color flips.

32

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

J N private Node rotatelLeft(Node h)
{
h assert i1sRed(h.right);
Node x = h.right;
X h.right = x.left;
less x.left = h;
than E x.color = h.color;
h.color = RED;
between greater return Xx;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

33

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) private Node rotateLeft(Node h)
{
X assert i1sRed(h.right);
Node x = h.right;
h h.right = x.left;
greater X.left = h,
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

34

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left rotate E left
(before) (after)
h X
X h
less greater
than E than S
between greater less between
Eand S than S than E Eand S

Exercise. Verify that left rotation maintains symmetric order and perfect
black balance.

35

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

{(before) private Node rotateRight(Node h)
{
1 assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater X.right = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

36

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

I private Node rotateRight(Node h)
{
X assert isRed(h.left):
Node x = h.left;
h h.left = x.right;
less X.I’"ight = h;
than E x.color = h.color;
h.color = RED;
between greater return Xx;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

37

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

h)

38

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

h)

39

Insertion into a LLRB tree o | o
maintain symmetric order ~__ maintain perfect black balance

// —
« Do standard BST insert; color new link red.
« Repeat until color invariants restored:
— Both children red? Flip colors
— Right link red? Rotate left

— Two left reds in a row? Rotate right

inserting H two lefts in a row
G S0 rotalte right
add new
node here
right link red
so rotate left
both children red l

so flip colors

!

Insertion into a LLRB tree: passing red links up the tree

- Do standard BST insert; color new link red.
« Repeat until color invariants restored:

— Both children red? Flip colors

— Right link red? Rotate left

— Two left reds in a row? Rotate right

inserting P

6 both children red

so flip colors

(E) (S)
Q m X @ m both children

red so

flip colors

add new
node here

two lefts in a row
right link red so rotate right \
so rotate left

Red-black BST construction demo

insert SEARCHXMPL

42

Insertion into a LLRB tree: Java implementation

Can distill down to three cases!
« Right child red; left child black: rotate left.

h
- Left child red; left-left grandchild red: rotate right. gﬁ o h
h = rotate ;&1
\right

rotate flip
g% colors

« Both children red: flip colors.

private Node put(Node h, Key key, Value val)

{ : insert at bottom
if (h == null) return new Node(key, val, RED); < (and color it red)
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = putCh.left, key, val);
else if (cmp > 0) h.right = putCh.right, key, val);
else if h.val = val;
1f (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); <«——— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); <«——— balance 4-node
if (isRed(h.left) && isRed(h.right)) f1ipColors(h); <«——— split 4-node
return h; T

} only a few extra lines of code provides near-perfect balance

43

M DO O)

255 insertions in descending order

Insertion into a LLRB tree: visualization

N =255

max = 10
avg = 7.3
opt=7.0

x ﬁ i ‘s? (i

Ll l l“..

@

255 random insertions

tv,Y

|
!

lll

46

Balanced search trees: quiz 4

What is the maximum height of a LLRB tree with n keys?

A. ~logsn
B. ~log, n
C. ~2log,n
D.

~nNn

47

Balance in LLRB trees

Proposition. Height of tree is <21gn in the worst case.

Pf.
« Black height = height of corresponding 2-3 tree < Ign.
« Never two red links in-a-row.

I A‘K A‘
O A A it «ﬂ

48

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
search delete search delete

sequential search

(unordered list) " " " " " " FESL
(:::Z:Z;Zi:;t) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()
2-3 tree log n log n log n log n log n log n v compareTo()

red-black BST log n log n log n log n v compareTo()

hidden constant c is small
(at most 2 1g n compares) 49

Historical context: Guibas & Sedgewick 1978

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Lco J. Guibas Robert Sedgewick*

Xerox Palo Alto Research Center, Program in Computer Science
Palo Alto, California, and and Brown University
Carnegie-Mellon University Providence, R. L

the way down towards a lcaf. As we will sce, this has a number of

ABSTRACT significant advantages over the older methods. We shall examine a

number of varations on a common theme and exhibit full

Tn this paper we present a mniform framework for the implementation implementations which are notable for their brevity. One
and study of balanced tree algovithms. We show how to imbed in this implementation is cxamined carcfully, and some propertics about its

Why “red-black™

Xerox PARC innovations. [1970s]
« Alto.
- GUL.
« Ethernet.
- Smalltalk.

C- Laser printing.)
. Bitmapped display. LR
« WYSIWYG text editor.

XEROX.

Historical context: Sedgewick 2008

Left-leaning Red-Black Trees
Robert Sedgewick

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

The red-black tree model for implementing balanced search trees, introduced by Guibas and Sedge-
wick thirty years ago, is now found throughout our computational infrastructure. Red-black trees
are described in standard textbooks and are the underlying data structure for symbol-table imple-
mentations within C++, Java, Python, BSD Unix, and many other modern systems. However, many
of these implementations have sacrificed some of the original design goals (primarily in order to
develop an effective implementation of the delete operation, which was incompletely specified in
the original paper), so a new look is worthwhile. In this paper, we describe a new variant of red-
black trees that meets many of the original design goals and leads to substantially simpler code for
insert/delete, less than one-fourth as much code as in implementations in common use.

51

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
« C++ STL: map, multimap, multiset.
« Linux kernel: completely fair scheduler, 1inux/rbtree.h.
« Emacs: conservative stack scanning.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs,

B-trees (and cousins) are widely used for file systems and databases.

« Windows: NTFS.

« Mac: HFS, HFS+.

« Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.

« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

H ORACLE
Mac bhﬁafs DATABASE

52

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
« Red-black BST.

« Exceeding height limit of 80 triggered error-recovery process.

N

should allow for <24 keys

Extended telephone service outage.
« Main cause = height bound exceeded!

« Telephone company sues database provider.
« Legal testimony:

“ If implemented properly, the height of a red—black BST

I

with n keys is at most 2 lgn.” — expert witness

53

