Algorithms

3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
- deletion (see book or videos)

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

3.2 Binary Search Trees

- BSTs

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Differences between heaps and binary search trees

	Heap	BST		
Supported operations	Insert, delete-max	insert, search, delete, ordered operations		
What is inserted	Keys	Key-value pairs		Linked nodes
:---:				

Binary search trees: quiz 1
Which of the following properties hold?
A. If a binary tree is heap ordered, then it is symmetrically ordered.
B. If a binary tree is symmetrically ordered, then it is heap ordered.
C. Both A and B .
D. Neither A nor B.

BST representation in Java

A BST contains a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.


```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```


Key and Value are generic types; Key is Comparable

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
    private Node root; « root of BST
    private class Node
    { /* see previous slide */ }
    public void put(Key key, Value val)
    { /* see next slide */ }
    public Value get(Key key)
    { /* see next slide */ }
    public Iterable<Key> keys()
    { /* see slides in next section */ }
    public void delete(Key key)
    { /* see textbook */ }
}
```

BST search (get)

If less, go left; if greater, go right; if equal, search hit; if null node, search miss.

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return nul1;
}
```

Cost. Number of compares $=1+$ depth of node.

BST insert (put)

Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
inserting L

BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == nul1) return new Node(key, va1);
    int cmp = key.compareTo(x.key);
```

```
    if (cmp < 0) x.left = put(x.left, key, val);
```

 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
    ```
    else if (cmp == 0) x.val = val;
```

 return x;
 \}

Cost. Number of compares $=1+$ depth of node.
inserting L

Insertion into a BST

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = $1+$ depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

Binary search trees: quiz 2

Suppose that you insert n keys in random order into a BST. What is the expected height of the resulting BST?
A. $\sim \lg n$
B. $\sim \ln n$
C. $\sim 2 \lg n$
D. $\sim 2 \ln n$
E. $\sim 4.31107 \ln n$

Correspondence between BSTs and quicksort partitioning

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P | S | E | U | D | 0 | M | Y | T | H | 1 | C | A | L |
| P | S | E | U | D | 0 | M | Y | T | H | 1 | C | A | L |
| H | L | E | A | D | 0 | M | C | 1 | P | T | Y | U | S |
| D | C | E | A | H | 0 | M | L | 1 | P | T | Y | U | S |
| A | C | D | E | H | 0 | M | L | \| | P | T | Y | U | S |
| A | C | D | E | H | 0 | M | L | I | P | T | Y | U | S |
| A | C | D | E | H | 0 | M | L | , | P | T | Y | U | S |
| A | C | D | E | H | 0 | M | L | I | P | T | Y | U | S |
| A | C | D | E | H | 1 | M | L | 0 | p | T | Y | U | S |
| A | C | D | E | H | I | M | L | 0 | P | T | Y | U | S |
| A | C | D | E | H | I | L | M | 0 | P | T | Y | U | S |
| A | C | D | E | H | I | L | M | 0 | P | T | Y | U | S |
| A | C | D | E | H | I | L | M | 0 | P | S | T | U | Y |
| A | C | D | E | H | I | L | M | 0 | P | S | T | U | Y |
| A | C | D | E | H | I | L | M | 0 | P | S | T | U | Y |
| A | C | D | E | H | 1 | L | M | 0 | P | S | T | U | Y |
| A | C | D | E | H | 1 | L | M | 0 | P | S | T | U | Y |

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If n distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln n$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If n distinct keys are inserted into a BST in random order, the expected height is $\sim 4.31107 \ln n$.
expected depth of
function-call stack in quicksort

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France
reed@moka.ccr.jussieu.fr

But... Worst-case height is $n-1$.
Unlike quicksort, worst case matters - client may not insert in random order.

ST implementations: summary

| implementation | guarantee | | average case | | operations on keys |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | search | insert | search hit | insert | |
| sequential search (unordered list) | n | n | n | n | equals() |
| binary search (ordered array) | $\log n$ | n | $\log n$ | n | compareTo() |
| BST | n | n | $\log n$ | $\log n$ | compareTo() |

Why not shuffle to ensure a (probabilistic) guarantee of $\log n$?

3.2 Binary Search Trees

- BSTS

- iteration
ordered operations
- deletion

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Binary search trees: quiz 3
In which order does traverse(root) print the keys in the BST?

```
private void traverse(Node x)
{
    if (x == null) return;
    traverse(x.1eft);
    StdOut.println(x.key);
    traverse(x.right);
}
```

A. ACEHMRSX
B. \quad S E A CR H M X
C. CAMHREXS
D. $\quad S E X A R C H M$

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}
private void inorder(Node x, Queue<Key> q)
{
    if (x == nul1) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```


Property. Inorder traversal of a BST yields keys in ascending order.

Running time

Property. Inorder traversal of a BST takes linear time.

Silicon Valley

LevEl-ORDER Traversal

Level-order traversal of a binary tree.

- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- ...

level-order traversal: SETARCHM

Level-Order Traversal

Q. Given binary tree, how to compute level-order traversal?

level-order traversal: SETARCHM

3.2 Binary Search Trees

-BSTs

- iteration
- ordered operations

Algorithms

Robert Sedgewick | Kevin Wayne

- deletion

Omitted for midterm.
Only Rank discussed in lecture. See book/videos for the rest.
https://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in BST.
Maximum. Largest key in BST.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key in BST \leq query key. Ceiling. Smallest key in BST \geq query key.

Q. How to find the floor / ceiling?

Computing the floor

Floor. Largest key in BST \leq query key.

Key idea.

- To compute floor(key), search for key.
- Both floor (key) and ceiling(key) must be on search path. Why?

Computing the floor

key in node is a candidate for floor
(floor can't be in left subtree)

```
public Key floor (Key key)
```

public Key floor (Key key)
\{ return floor(root, key, null); \}
\{ return floor(root, key, null); \}
private Key floor(Node x, Key key, Key best)
private Key floor(Node x, Key key, Key best)
\{
\{
if ($x==$ nul1) return best;
if ($x==$ nul1) return best;
int cmp = key. compareTo(x.key);
int cmp = key. compareTo(x.key);
if (cmp < 0) return floor(x.left, key, best);
if (cmp < 0) return floor(x.left, key, best);
else if (cmp >0) return floor(x.right, key, x.key);
else if (cmp >0) return floor(x.right, key, x.key);
else if (cmp $==0$) return $x . k e y$;
else if (cmp $==0$) return $x . k e y$;
\}

```
\}
```



```
key in node is better candidate than best ( \(x\) must be in right subtree of node containing best)
```

$$
\begin{aligned}
& \text { key in node is too large } \\
& \text { (floor can't be in right subtree) }
\end{aligned}
$$

Rank and select

Rank. How many keys < key ?
Select. Key of rank k.
Q. How to implement rank() and select() efficiently for BSTs?
A. In each node, store the number of nodes in its subtree.

BST implementation: subtree counts

```
private class Node
{
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int count;
}
number of nodes in subtree
```

```
public int size()
{ return size(root); }
private int size(Node x)
{
    if (x == nul1) return 0;
    return x.count; ok to call
} when }x\mathrm{ is null
```

```
private Node put(Node x, Key key, Value val)
{
```

```
    if (x == nul1) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```


Rank

Rank. How many keys < key?
key < key in node? Recur on left subtree. key $==$ key in node? Everything in left subtree. $k e y>$ key in node? Everything in left subtree +1

+ recursive result from right subtree.

```
public int rank(Key key)
{ return rank(key, root); }
private int rank(Key key, Node x)
{
    if (x == nul1) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```

BST: ordered symbol table operations summary

order of growth of running time of ordered symbol table operations

ST implementations: summary

| implementation | guarantee | | average case | | ordered ops? | key
 interface |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | search | insert | search hit | insert | | |
| sequential search (unordered list) | n | n | n | n | | equals() |
| binary search (ordered array) | $\log n$ | n | $\log n$ | n | \checkmark | compareTo() |
| BST | $n \odot$ | $n \odot$ | $\log n$ | $\log n$ | \checkmark | compareTo() |
| red-black BST | | | $\log n$ | $\log n$ | \checkmark | compareTo() |

Next week. Guarantee logarithmic performance for all operations.

