2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation (see videos)

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

2.4 Priority Queues

- API and elementary implementations
- binary heaps

Algorithms

- heapsorf

- event-driven simulation (see videos)

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

data type	core operations	data structure
stack	PUSH, POP	linked list, resizing array
queue	ENQUEUE, DEQUEUE	linked list, resizing array
priority queue	INSERT, DeLETE-MAX	binary heap
symbol table	PUT, GET, DELETE	binary search tree, hash table
set	ADD, CONTAINS, DELETE	binary search tree, hash table

"Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious." - Fred Brooks

Priority queve

Collections allow adding and removing items. Which item to remove?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.
Generalizes: stack, queue, randomized queue.

operation argument	return value	
insert	P	
insert	Q	
insert	E	
remove max		Q
insert	X	
insert	A	
insert	M	
remove max		X
insert	P	
insert	L	
insert	E	
remove max		P

Priority queue API

Requirement. Keys are generic; they must also be Comparable.

public class	MaxPQ<Key extends	
	MaxPQ()	create an empty priority queue
	MaxPQ(Key[] a)	create a priority queue with given keys
void	insert(Key v)	insert a key into the priority queue
Key	de7Max ()	return and remove a largest key
boolean	isEmpty ()	is the priority queue empty?
Key	$\max ()$	return a largest key
int	size()	number of entries in the priority queue

Note. Duplicate keys allowed; de1Max() picks any maximum key.

Priority queve: applications

- Event-driven simulation.
- Numerical computation.
- Discrete optimization.
- Artificial intelligence. [customers in a line, colliding particles]
- Computer networks. [reducing roundoff error]
- Data compression. [bin packing, scheduling]
- Operating systems.
[A* search]
- Graph searching.
- Number theory.
- Spam filtering.
- Statistics.

[Huffman codes]

[load balancing, interrupt handling]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[Bayesian spam filter]
[online median in data stream]

8	4	7
1	5	6
3	2	

Priority queue: elementary implementation

Exercise. In the worst case, what are the running times for INSERT and Delete-Max for a priority queue implemented with

- an unordered array?
- an ordered array?

Priority queves: quiz 1

In the worst case, what are the running times for InSERT and Delete-Max for a priority queue implemented with an ordered array?
A. 1 and n
ignore array resizing
B. 1 and $\log n$
C. $\quad \log n$ and 1
D. n and 1

```
A E E E L L M M P P
```


Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

implementation	INSERT	DELETE-MAX	MAX
unordered array	1	n	n
ordered array	n	1	1
goal	$\log n$	$\log n$	$\log n$

what might this mean?

Solution. "Somewhat-ordered" array.

2.4 Priority Queues

- APr and elementary implementations
- binary heaps

Algorithms

Theapsorf

- event-driven simulation

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.
Recursive definition
Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.

Property. Height of complete binary tree with n nodes is $\lfloor\lg n\rfloor$.

A complete binary tree in nature

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!

Priority queues: quiz 2

Which is the index of the parent of the item at index k in a binary heap?
A. $k / 2-1$
B. $k / 2$
C. $k / 2+1$
D. $2 * \mathrm{k}$

$\begin{array}{cccccccccccrr}\mathrm{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \mathrm{a}[\mathrm{i}] & - & \mathrm{T} & \mathrm{S} & \mathrm{R} & \mathrm{P} & \mathrm{N} & 0 & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{H} & \mathrm{C}\end{array}$

Binary heap: properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $\mathrm{k} / 2$.
- Children of node at k are at 2 k and $2 \mathrm{k}+1$.

Heap representations

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered


```
T P
```


Binary heap: swim / promotion

Scenario. A key becomes larger than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```
private void swim(int k)
{
        while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
        parent of node at k is at k/2
}
```


Peter principle. Node promoted to level of incompetence.

Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.
Cost. At most $1+\lg n$ compares.

```
public void insert(Key x)
{
    pq[++n] = x;
    swim(n);
}
```


Binary heap: sink / demotion

Scenario. A key becomes smaller than one (or both) of its children's.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```
private void sink(int k)
{
    while (2*k <= n) children of node at k
    {
        are at 2*k and 2*k+1
    int j = 2*k;
    if (j < n && less(j, j+1)) j++;
    if (!less(k, j)) break;
    exch(k, j);
    k = j;
    }
}
```


Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.
Cost. At most $2 \lg n$ compares.

```
public Key delMax()
{
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = nu11; \longleftarrow prevent loitering
    return max;
}
```


Binary heap: Java implementation

```
pub1ic class MaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq;
    private int n;
    pub1ic MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; }
    pub1ic boolean isEmpty()
    { return n == 0; }
    public void insert(Key key) // see previous code
fixed capacity
(for simplicity)
PQ ops
```

```
    public Key de7Max() // see previous code
```

```
    public Key de7Max() // see previous code
```

```
private void swim(int k) // see previous code
```

private void swim(int k) // see previous code
private void sink(int k) // see previous code
private void sink(int k) // see previous code
private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j)
{ Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html

```

\section*{Priority queue: implementations cost summary}
\begin{tabular}{|c|c|c|c|}
\hline implementation & INSERT & DELETE-MAX & MAX \\
\hline unordered array & 1 & \(n\) & \(n\) \\
\hline ordered array & \(n\) & 1 & 1 \\
\hline binary heap & \(\log n\) & \(\log n\) & 1 \\
\hline
\end{tabular}
order of growth of running time for priority queue with \(\mathbf{n}\) items

\section*{Binary heap: considerations}

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.
leads to \(\log n\) (how

Minimum-oriented priority queue.
- Replace less() with greater().
- Implement greater().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.


Immutability of keys.
- Assumption: client does not change keys while they're on the PQ.
- Best practice: use immutable keys.

\section*{Immutability: implementing in Java}

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.
```

public final class Vector {
private final int n;
private final double[] data;
public Vector(doub7e[] data) {
this.n = data.length;
this.data = new double[n];
for (int i = 0; i < n; i++)
this.data[i] = data[i];
}
instance methods don't
change instance variables
}

```

Immutable in Java. String, Integer, Double, Color, File, ...
Mutable in Java. StringBuilder, Stack, URL, arrays, ...

\section*{Immutability: properties}

Data type. Set of values and operations on those values.
Immutable data type. Can't change the data type value once created.

Advantages.
- Simplifies debugging.
- Simplifies concurrent programming.
- More secure in presence of hostile code.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data-type value.

\section*{Binary heap: practical improvement}

Multiway heaps.
- Complete \(d\)-way tree.
- Parent's key no smaller than its children's keys.

Fact. Height of complete \(d\)-way tree on \(n\) nodes is \(\sim \log _{d} n\).


\section*{Priority queves: quiz 3}

In the worst case, how many compares to Insert and Delete-Max in a d-way heap?
A. \(\sim \log _{d} n\) and \(\sim \log _{d} n\)
B. \(\sim \log _{d} n\) and \(\sim d \log _{d} n\)
C. \(\sim d \log _{d} n\) and \(\sim \log _{d} n\)
D. \(\sim d \log _{d} n\) and \(\sim d \log _{d} n\)

\section*{Priority queue: implementation cost summary}
\begin{tabular}{|c|c|c|c|c|}
\hline implementation & INSERT & DELETE-MAX & MAX \\
\hline unordered array & 1 & \(n\) & \(n\) & \\
\hline ordered array & \(n\) & 1 & 1 & \\
\hline binary heap & \(\log n\) & \(\log n\) & 1 & \\
\hline d-ary heap & \(\log _{d} n\) & \(d \log _{d} n\) & 1 & \multirow{2}{*}{ sweet spot: \(d=4\)} \\
\hline Fibonacci & 1 & \(\log n \dagger\) & 1 & \\
\hline Brodal queue & 1 & \(\log n\) & 1 & \\
\hline impossible & 1 & 1 & & \\
\hline
\end{tabular}
order-of-growth of running time for priority queue with \(\mathbf{n}\) items

\section*{Impossibility of priority queue with constant-time INSERT \& DELETE-MAX}

\section*{Exercise.}
- Assume there is a priority queue which makes a constant number of compares in the worst case for both Insert and Delete-Max.
- Design a sorting algorithm that uses this priority queue.
- How many compares does it perform in the worst case?

\subsection*{2.4 Priority Queues}
- APr and elementary implementations.
- binary heaps
- heapsort
- event-driven simulatión

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

\section*{Priority queves: quiz 4}

What are the properties of this sorting algorithm?
```

public void sort(String[] a)
{
int n = a.length;
MaxPQ<String> pq = new MaxPQ<String>();
for (int i = 0; i < n; i++)
pq.insert(a[i]);
for (int i = n-1; i >= 0; i--)
a[i] = pq.delMax();
}

```
A. \(n \log n\) compares in the worst case.
B. In-place.
C. Stable.
D. All of the above.

\section*{Heapsort}

Basic plan for in-place sort.
- View input array as a complete binary tree.
- Heap construction: build a max-heap with all \(n\) keys.
- Sortdown: repeatedly remove the maximum key.
keys in arbitrary order

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
11 \\
\hline \(\mathbf{S}\) & O & R & T & E & X & A & M & P & L \\
\hline
\end{tabular}
build max heap (in place)

sorted result
(in place)


\section*{Heapsort demo}

Heap construction. Build max heap using bottom-up method.
for now, assume array entries are indexed 1 to \(n\)
array in arbitrary order

\begin{tabular}{ccccccccccccc|}
S & O & R & T & E & X & A & M & P & L & E \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{tabular}

\section*{Heapsort demo}

Sortdown. Repeatedly delete the largest remaining item.

\section*{array in sorted order}


\section*{Heapsort: heap construction}

First pass. Build heap using bottom-up method.
```

for (int k = n/2; k >= 1; k--)
sink(a, k, n);

```


\section*{Key insight.}

After sink(a, k, n) completes, the subtree rooted at \(k\) is a heap.

\section*{Heapsort: sortdown}

Second pass.
- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.
```

while (n > 1)
{
exch(a, 1, n--);
sink(a, 1, n);
}

```


\section*{Heapsort: Java implementation}
```

public class Heap
{
public static void sort(Comparable[] a)
{
int n = a.length;
for (int k = n/2; k >= 1; k--)
sink(a, k, n);
while (n > 1)
{
exch(a, 1, n);
sink(a, 1, --n);
}
}
private static void sink(Comparable[] a, int k, int n)
{/* as before */ } but make static (and pass arguments)
private static boolean less(Comparable[] a, int i, int j)
{ /* as before */ }
private static void exch(ODject[] a, int i, int j)
{ /* as before */ }
}

```

Heapsort: trace
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{a[i]} \\
\hline N & k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline initial & alues & & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline 11 & 5 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 4 & & S & 0 & R & T & L & X & A & M & P & E & E \\
\hline 11 & 3 & & S & 0 & X & T & L & R & A & M & P & E & E \\
\hline 11 & 2 & & S & T & X & P & L & R & A & M & 0 & E & E \\
\hline 11 & 1 & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline \multicolumn{2}{|l|}{heap-ordered} & & X & T & S & P & L & R & A & M & 0 & E & E \\
\hline 10 & 1 & & T & P & S & 0 & L & R & A & M & E & E & X \\
\hline 9 & 1 & & S & P & R & 0 & L & E & A & M & E & T & X \\
\hline 8 & 1 & & R & P & E & 0 & L & E & A & M & S & T & X \\
\hline 7 & 1 & & P & 0 & E & M & L & E & A & R & S & T & X \\
\hline 6 & 1 & & 0 & M & E & A & L & E & P & R & 5 & T & X \\
\hline 5 & 1 & & M & L & E & A & E & 0 & P & R & S & T & X \\
\hline 4 & 1 & & L & E & E & A & M & 0 & P & R & S & T & X \\
\hline 3 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 2 & 1 & & E & A & E & L & M & 0 & P & R & S & T & X \\
\hline 1 & 1 & & A & E & E & L & M & 0 & P & R & S & T & X \\
\hline sorte & result & & A & E & E & L & M & 0 & P & R & S & T & X \\
\hline
\end{tabular}

Heapsort trace (array contents just after each sink)

\section*{Heapsort: mathematical analysis}

Proposition. Heap construction makes \(\leq n\) exchanges and \(\leq 2 n\) compares. Pf sketch. [assume \(n=2^{h+1}-1\) ]

a tricky sum
(see COS 340)
\[
\begin{aligned}
h+2(h-1)+4(h-2)+8(h-3)+\ldots+2^{h}(0) & =2^{h+1}-h-2 \\
& =n-(h-1) \\
& \leq n
\end{aligned}
\]

\section*{Heapsort: mathematical analysis}

Proposition. Heap construction makes \(\leq n\) exchanges and \(\leq 2 n\) compares.
Proposition. Heapsort uses \(\leq 2 n \lg n\) compares and exchanges.
algorithm can be improved to \(\sim n \lg n\)
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with \(n \log n\) worst-case.
- Mergesort: no, linear extra space.
\(\longleftarrow\) in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case. \(\longleftarrow n \log n\) worst-case quicksort possible,
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
- Inner loop longer than quicksort's.
- Makes poor use of cache.
- Not stable.

\section*{Sorting algorithms: summary}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & inplace? & stable? & best & average & worst & remarks \\
\hline selection & \(\checkmark\) & & \(1 / 2 n^{2}\) & \(1 / 2 n^{2}\) & \(1 / 2 n^{2}\) & \(n\) exchanges \\
\hline insertion & \(\checkmark\) & \(\checkmark\) & \(n\) & \(1 / 4 n^{2}\) & \(1 / 2 n^{2}\) & use for small \(n\) or partially ordered \\
\hline merge & & \(\checkmark\) & \(1 / 2 n \lg n\) & \(n \lg n\) & \(n \lg n\) & \(n \log n\) guarantee; stable \\
\hline quick & \(\checkmark\) & & \(n \lg n\) & \(2 n \ln n\) & \(1 / 2 n^{2}\) & \(n \log n\) probabilistic guarantee; fastest in practice \\
\hline 3-way quick & \(\checkmark\) & & \(n\) & \(2 n \ln n\) & \(1 / 2 n^{2}\) & improves quicksort when duplicate keys \\
\hline heap & \(\checkmark\) & & \(3 n\) & \(2 n \lg n\) & \(2 n \lg n\) & \(n \log n\) guarantee; in-place \\
\hline ? & \(\checkmark\) & \(\checkmark\) & \(n\) & \(n \lg n\) & \(n \lg n\) & holy sorting grail \\
\hline
\end{tabular}```

