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Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure. 

・Full scientific understanding of their properties has enabled us  
to develop them into practical system sorts. 

・Quicksort honored as one of top 10 algorithms of 20th century 
in science and engineering. 

 
Mergesort.  [last lecture] 

 
 
 
 
Quicksort.  [this lecture]

...

...
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Quicksort t-shirt



Tony Hoare 
・Invented quicksort to translate Russian into English. 

・[ but couldn’t explain or implement it! ] 

・Learned Algol 60 (and recursion). 

・Implemented quicksort. 

Bob Sedgewick 
・Refined and popularized quicksort. 

・Analyzed many versions of quicksort.

A brief history
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Tony Hoare 
1980 Turing Award

Bob Sedgewick



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort 

‣ selection 

‣ duplicate keys 

‣ system sorts

2.3  QUICKSORT

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu


 6

Quicksort overview demo
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Quicksort overview

Step 1.  Shuffle the array. 

Step 2.  Partition the array so that, for some j  

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Step 3.  Sort each subarray recursively.

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview



Quicksort partitioning demo

Repeat until i and j pointers cross. 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]



In the worst case, how many compares and exchanges to partition 
an array of length n ? 

A. ~ ½ n  and  ~ ½ n 

B. ~ ½ n  and  ~ n 

C. ~ n  and  ~ ½ n 

D. ~ n  and  ~ n
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Quicksort quiz 1

M A B C D E V W X Y Z

0 1 2 3 4 5 6 7 8 9 10

scan until ≥ M

scan until ≤ M

n+1 compares in worst case
(E and V are compared with M twice)



 10

Quicksort partitioning:  Java implementation

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

private static int partition(Comparable[] a, int lo, int hi) 
{ 
   int i = lo, j = hi+1; 
   while (true) 
   { 
      while (less(a[++i], a[lo])) 
         if (i == hi) break; 

      while (less(a[lo], a[--j])) 
         if (j == lo) break; 
      
      if (i >= j) break; 
      exch(a, i, j);  
   } 

   exch(a, lo, j); 
   return j; 
} 

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

https://algs4.cs.princeton.edu/23quick/Quick.java.html

https://algs4.cs.princeton.edu/23quick/Quick.java.html
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Quicksort:  Java implementation

public class Quick  
{ 
   private static int partition(Comparable[] a, int lo, int hi)  
   {  /* see previous slide */  } 

   public static void sort(Comparable[] a)  
   { 
      StdRandom.shuffle(a); 
      sort(a, 0, a.length - 1); 
   } 

   private static void sort(Comparable[] a, int lo, int hi) 
   { 
      if (hi <= lo) return; 
      int j = partition(a, lo, hi); 
      sort(a, lo, j-1); 
      sort(a, j+1, hi);  
  } 
} 

shuffle needed for 
performance guarantee 

(stay tuned)

https://algs4.cs.princeton.edu/23quick/Quick.java.html

https://algs4.cs.princeton.edu/23quick/Quick.java.html


Quicksort trace
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 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   3   4   E  C  A  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   2   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  4       4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  6   6  15   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  7   9  15   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  7   7   8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  8       8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
 10  13  15   A  C  E  E  I  K  L  M  O  P  S  Q  R  T  U  X  
 10  12  12   A  C  E  E  I  K  L  M  O  P  R  Q  S  T  U  X  
 10  11  11   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 10      10   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14  14  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 15      15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 
  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)



Quicksort animation
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http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order

http://www.sorting-algorithms.com/quick-sort


Another quicksort animation
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https://en.wikipedia.org/wiki/Quicksort
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Quicksort:  implementation details

Partitioning in-place.  Using an extra array makes partitioning easier  
(and stable), but it is not worth the cost. 

 
Terminating the loop.  Testing whether the pointers cross is trickier  
than it might seem. 

 
Equal keys.  When duplicate keys are present, it is (counter-intuitively)  
better to stop scans on keys equal to the partitioning item’s key. 

 
Preserving randomness.  Shuffling is needed for performance guarantee. 

Equivalent alternative.  Pick a random partitioning item in each subarray.

stay tuned
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Quicksort:  empirical analysis

Running time estimates: 

・Home PC executes 108 compares/second. 

・Supercomputer executes 1012 compares/second. 

 
 
 
 
 
 
 
 
 
 
 
Lesson 1.  Good algorithms are better than supercomputers. 

Lesson 2.  Great algorithms are better than good ones.

insertion sort (n2) mergesort (n log n) quicksort (n log n)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant



Worst case.  Number of compares is ~ ½ n 2 .
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Quicksort:  worst-case analysis

after random shuffle



Worst case.  Number of compares is ~ ½ n 2 . 

Good news. Worst case analysis of quicksort is irrelevant for practical purposes. 

Worst case exponentially unlikely to occur (unless bug in shuffling method.) 

More likely that lightning strikes computer during execution.
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Quicksort:  worst-case analysis

after random shuffle



Proposition.  The expected number of compares Cn to quicksort an array of  
n distinct keys is ~ 2n ln n (and the number of exchanges is ~ ⅓ n ln n ). 

Intuition. Each partitioning step splits array approximately in half. 

Recall: Any algorithm with the following structure takes Θ(n log n) time. 

For quicksort, the two problems aren’t exactly half the size, but close enough.
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Quicksort:  average-case analysis

public static void f(int n) 
{ 
    if (n == 0) return; 
    linear(n); 
    f(n/2); 
    f(n/2); 
}

solve two problems 
of half the size

do a linear amount of work



Proposition.  The expected number of compares Cn to quicksort an array of  
n distinct keys is ~ 2n ln n (and the number of exchanges is ~ ⅓ n ln n ). 

Pf.  Cn satisfies the recurrence C0 = C1 = 0 and for n  ≥  2: 
 
 

・Multiply both sides by n and collect terms: 
 

・Subtract from this equation the same equation for n - 1:  
 

・Rearrange terms and divide by n (n + 1):
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Quicksort:  average-case analysis

partitioning probability

left right
partitioning

Cn = (n + 1) +

�
C0 + Cn�1

n

�
+

�
C1 + Cn�2

n

�
+ . . . +

�
Cn�1 + C0

n

�

nCn � (n � 1) Cn�1 = 2n + 2 Cn�1

Cn

n + 1
=

Cn�1

n
+

2

n + 1

nCn = n(n + 1) + 2(C0 + C1 + . . . + Cn�1)

Interesting but 

out of scope



・Repeatedly apply previous equation: 
 
 
 
 
 
 

・Approximate sum by an integral: 
 
 
 
 

・Finally, the desired result:
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Quicksort:  average-case analysis

substitute previous equation

Cn

n + 1
=

Cn�1

n
+

2

n + 1

Cn � 2 (n + 1) ln n � 1.39n lg n
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Quicksort:  summary of performance characteristics

Quicksort is a randomized algorithm. 

・Guaranteed to be correct. 

・Running time depends on random shuffle.  

 
Average case.  Expected number of compares is ~ 1.39 n lg n. 

・39% more compares than mergesort. 

・Faster than mergesort in practice because of less data movement. 

 
Best case.  Number of compares is ~  n lg n. 

Worst case.  Number of compares is ~  ½ n2. 

[ but more likely that lightning bolt strikes computer during execution ]



Three different types of average-case complexity

In this course, for simplicity, we’ll ignore the distinction between average 

case and expected complexity.
 23

Cost is averaged 
over…

Example Impact of worst case

Amortized Sequence of 
operations

Stacks and 
queues using 

resizing arrays

Some operations take (far) longer 
than amortized running time

Expected Internal randomness 
of implementation

Quicksort Irrelevant

Average 
case

Possible inputs Quicksort 
without shuffling

Worst case may occur if our model 
of “average” input is wrong

Frequent source of performance bugs in practice



Proposition.  Quicksort is an in-place sorting algorithm. 

Pf. 

・Partitioning:  constant extra space. 

・Function-call stack:  logarithmic extra space (with high probability). 

 
 
 
 
Proposition.  Quicksort is not stable. 

Pf.  [ by counterexample ]
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Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1



Insertion sort small subarrays. 

・Even quicksort has too much overhead for tiny subarrays. 

・Cutoff to insertion sort for ≈ 10 items.
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Quicksort:  practical improvement
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Selection

Goal.  Given an array of n items, find item of rank k. 
Ex.  Min (k = 0), max (k = n − 1), median (k = n / 2). 
 
Use theory as a guide. 

・Easy n log n upper bound.  How? 

・Easy n upper bound for k = 0, 1, 2.  How? 

・Easy n lower bound.  Why? 

 
Which is true? 

・n log n lower bound?

・n upper bound?

is selection as hard as sorting?

is there a linear-time algorithm?



Partition array so that: 

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Repeat in one subarray, depending on j; finished when j equals k. 

Proposition.  Quick-select takes linear time on average. 

 
Intuition: 

Each partitioning step splits array approximately in half:  
n + n / 2 + n / 4 + … + 1  ~  2n compares.
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Quick-select

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview
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Duplicate keys

Often, purpose of sort is to bring items with equal keys together. 

・Sort population by age. 

・Remove duplicates from mailing list. 

・Sort job applicants by college attended. 

 Typical characteristics of such applications. 

・Huge array. 

・Small number of key values.

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key
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Duplicate keys:  stop on equal keys

Our partitioning subroutine stops both scans on equal keys. 

 
 
 
 
 
 
 
 
Q.  Why not continue scans on equal keys?

P G E P A Q B P Y C O U P Z S R

scan until ≥ P scan until ≤ P

P G E P A Q B P Y C O U P Z S R

scan until > P scan until < P



What is the result of partitioning the following array (skip over equal keys)?  
 
 
 
 

A.   

 

B.  

C.  

D.   I don't know.
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Quicksort:  quiz 2

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until > A scan until < A



What is the result of partitioning the following array (stop on equal keys)?  
 
 
 
 

A.   

 

B.  

C.  

D.   I don't know.
 33

Quicksort:  quiz 3

A A A A A A A A A A A A A A A A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

scan until ≥ A scan until ≤ A



Partitioning an array with all equal keys

 34



Duplicate keys:  partitioning strategies

Bad.  Don’t stop scans on equal keys. 
          [ ~ ½ n 2 compares when all keys equal ] 

 
 
 
 
Good.  Stop scans on equal keys. 
          [ ~ n lg n compares when all keys equal ] 

 
 
 
 
Better.  Put all equal keys in place. How? 
          [ ~ n compares when all keys equal ]
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B A A B A B B B C C C        A A A A A A A A A A A

B A A B A B C C B C B        A A A A A A A A A A A

A A A B B B B B C C C        A A A A A A A A A A A



Goal.  Partition array into three parts so that: 

・Entries in the left part are less than the partitioning item. 

・Entries in the left part are equal to the partitioning item. 

・Entries in the left part are greater than the partitioning item. 

 
 
 
 
 
 
 
 
 
3-way partitioning algorithm.  [Edsger Dijkstra] 

・Now incorporated into C library qsort() and Java 6 system sort.

 36

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 

– (a[i] == v):  increment i
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Dijkstra’s 3-way partitioning algorithm: demo

lo

P1 D B X W P2 P3 V P4 A P5 C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant



・Let v be partitioning item a[lo]. 

・Scan i from left to right. 

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i 

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt 

– (a[i] == v):  increment i
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Dijkstra’s 3-way partitioning algorithm: demo

lo

D B C A P5 P2 P3 P1 P4 V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant



private static void sort(Comparable[] a, int lo, int hi)  
{  
   if (hi <= lo) return;  
   int lt = lo, gt = hi; 
   Comparable v = a[lo];  
   int i = lo + 1;  
   while (i <= gt)  
   {  
      int cmp = a[i].compareTo(v);  
      if      (cmp < 0) exch(a, lt++, i++);  
      else if (cmp > 0) exch(a, i, gt--);  
      else              i++;  
   } 

   sort(a, lo, lt - 1);  
   sort(a, gt + 1, hi);  
}  
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3-way quicksort:  Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning
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3-way quicksort:  visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning
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Sorting summary

inplace? stable? best average worst remarks

selection ✔ ½ n 2 ½ n 2 ½ n 2 n exchanges

insertion ✔ ✔ n ¼ n 2 ½ n 2 use for small n 
or partially sorted

merge ✔ ½ n lg n n lg n n lg n n log n guarantee; 
stable

quick ✔ n lg n 2 n ln n ½ n 2 n log n probabilistic guarantee; 
fastest in practice

3-way quick ✔ n 2 n ln n ½ n 2
improves quicksort 
when duplicate keys

? ✔ ✔ n n lg n n lg n holy sorting grail
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System sort in Java 8

Arrays.sort(). 

・Has one method for objects that are Comparable. 

・Has an overloaded method for each primitive type. 

・Has an overloaded method for use with a Comparator. 

・Has overloaded methods for sorting subarrays. 

 
Algorithms. 

・Dual-pivot quicksort for primitive types. 

・Timsort for reference types. 

 
Q.  Why use different algorithms for primitive and reference types? 

Q.  Why so many overloaded methods? 

 
Bottom line.  Use the system sort!

Use two pivots for partitioning; recursively sort three subarrays

Optimized mergesort


