Algorithms

2.3 QuICKSORT

- quicksort
- selection
- duplicate keys
- system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Mergesort. [last lecture]

Quicksort. [this lecture]

Quicksort t-shirt
k) $\mathrm{lo}=\mathrm{i}+1$; else return a[i]; \} return a[lo]; \}
npareTo(w) < 0); \} private static void exch(Object[]
orivate static boolean isSorted(Comparable[] a) \{ return
ted(Comparable[] a, int lo, int hi) \{ for (int $i=10+1$;
o true; \} private static void show(Comparable[] a) \{ for (in
oublic static void main(String[] args) \{ String[] a = StdIn. re
or (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{a}$. length; $\mathrm{i}++$) \{ String ith $=$ (String) Quick
ublic class Quick \{ public static void sort(Comparable[] a) \{ S
static void sort (Comparablell a. int ln, int hi) \{ if (hi <= lo
(a, lo, j-1); sort (a,

$$
o \text { int hi) \{ int } i=\text { li }
$$

$$
\begin{aligned}
& 0, \text { int nil) } \begin{array}{l}
\text { int } 1= \\
\text { ak; }
\end{array} \text { less(v, a[- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ak; white Cess(v, al- } \\
& \text { ic static Comparable st }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ic static Comparable st } \\
& \text { ected element out of bc }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { ected element out of bc } & \text { dRandom. shuffle }(a) \text {; } \\
\text { in } \\
\text { ition }(a, ~ l o, ~ h i) ; ~ i f ~ & i
\end{array}
$$

$$
\begin{aligned}
& \text { ected element out of } \mathrm{bc} \\
& \text { ition }
\end{aligned}
$$

$$
\text { ition(a, lo, hi);if (i } \quad \text { is if (i < k) Lo }
$$

$$
\begin{aligned}
& \text { int } j) \text { \{ Object swap }=a[i] ; a[i]=a[j] ; a[j]=\text { swap; }\} \text { pı } \\
& n \text { isSorted(a, 0, a.length }-1) ;\} \text { private static boolean is }
\end{aligned}
$$

$$
\text { n isSorted(a, 0, a. length - 1); \} private static boolean is }
$$

$$
1 \text {; i }<=\text { hi; i++) if (less(a[i], a[i-1])) return false; re }
$$

$$
\text { int } i=0 ; i<a . l e n g t h ; i++)\{S t d 0 u t . p r i n t l n(a[i]) ;\}
$$

= StdIn.readStrings(); Quick.sort(a); show(a); StdOut
ring) Quick.select(a, i); StdOut.println(ith); \} \}
ndom. shuffle(a); sort(a, 0, a. length - 1); \} priv
eturn; int $\mathrm{j}=$ partition(a, lo, hi); sort(a, lo
tatic int partition(Cor
tatic int partition(Cor
\{ while \mathfrak{i}) \} exsch $(a, 10$
a, i, j); \} exch(a, lo
th) $\{$ throw new Runtim
0 , hi = a. length - 1 ;
else return a[i]; \} re
npareTo(w) < 0) ; \} private stati
orivate static boolean isSorted(1
ted(Comparable[] a, int lo, int I
o true; \} private static void sh
oublic static void main(String[]
or (int i = 0; i < a.length; i++
ublic class Quick \{ public stati
static void sort (Comparable[] a,
(a, lo, i-1); sort(a, j+1, hi);

CS @ Princeton

A brief history

Tony Hoare

- Invented quicksort to translate Russian into English. [but couldn't explain or implement it!]
- Learned Algol 60 (and recursion).
- Implemented quicksort.

Tony Hoare 1980 Turing Award

Bob Sedgewick

- Refined and popularized quicksort.
- Analyzed many versions of quicksort.

2.3 QuICKSORT

- quicksort
- selection

Algorithms

- duplicate keys

- system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Quicksort overview demo

Quicksort overview

Step 1. Shuffle the array.
Step 2. Partition the array so that, for some j

- Entry $\mathrm{a}[\mathrm{j}]$ is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Step 3. Sort each subarray recursively.

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

| K | R | A | T | E | L | E | P | U | I | M | Q | C | X | O | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | \uparrow | \uparrow | | | | | | | | | | | | | | |
| lo | i | | | | | | | | | | | | | | | i |

Quicksort quiz 1

In the worst case, how many compares and exchanges to partition an array of length n ?
A. $\sim 1 / 2 n$ and $\sim 1 / 2 n$
B. $\quad \sim 1 / 2 n$ and $\sim n$
C. $\sim n$ and $\sim 1 / 2 n$
D. $\sim n$ and $\sim n$

Quicksort partitioning: Java implementation

```
private static int partition(Comparable[] a, int lo, int hi)
{
    int i = lo, j = hi+1;
    while (true)
    {
        while (less(a[++i], a[lo])) find item on left to swap
        if (i == hi) break;
        while (less(a[lo], a[--j]))
            if (j == 1o) break;
        if (i >= j) break; check if pointers cross
        exch(a, i, j);
        swap
    }
    exch(a, lo, j); swap with partitioning item
    return j; return index of item now known to be in place
}
```

https://algs4.cs.princeton.edu/23quick/Quick.java.html

during

after

Quicksort: Java implementation

```
public class Quick
{
    private static int partition(Comparable[] a, int lo, int hi)
    { /* see previous slide */ }
    public static void sort(Comparable[] a)
    {
        StdRandom.shuffle(a);
        sort(a, 0, a.length - 1);
    }
    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }
}
```


Quicksort trace

Quicksort animation

50 random items

- algorithm position in order
current subarray not in order

[^0]
Another quicksort animation

https://en.wikipedia.org/wiki/Quicksort

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but it is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier than it might seem.

Equal keys. When duplicate keys are present, it is (counter-intuitively) better to stop scans on keys equal to the partitioning item's key.

Preserving randomness. Shuffling is needed for performance guarantee. Equivalent alternative. Pick a random partitioning item in each subarray.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (\mathbf{n}^{2})			mergesort ($\mathrm{n} \log \mathrm{n}$)			quicksort ($\mathrm{n} \log \mathrm{n}$)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim 1 / 2 n^{2}$.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim 1 / 2 n^{2}$.

lo $\quad \mathrm{j}$	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	

```
after random shuffle
```

Good news. Worst case analysis of quicksort is irrelevant for practical purposes.

Worst case exponentially unlikely to occur (unless bug in shuffling method.) More likely that lightning strikes computer during execution.

Quicksort: average-case analysis

Proposition. The expected number of compares C_{n} to quicksort an array of n distinct keys is $\sim 2 n \ln n$ (and the number of exchanges is $\sim 1 / 3 n \ln n$).

Intuition. Each partitioning step splits array approximately in half.

Recall: Any algorithm with the following structure takes $\Theta(n \log n)$ time.

```
public static void f(int n)
{
    if (n == 0) return;
    linear(n); « do a linear amount of work
    f(n/2); \longleftarrow solve two problems
    f(n/2); «
}
```

For quicksort, the two problems aren't exactly half the size, but close enough.

Quicksort: average-case analysis

Proposition. The expected number of compares C_{n} to quicksort an array of n distinct keys is $\sim 2 n \ln n$ (and the number of exchanges is $\sim 1 / 3 n \ln n$).

Pf. C_{n} satisfies the recurrence $C_{0}=C_{1}=0$ and for $n \geq 2$:

$$
\begin{gathered}
\stackrel{\text { partitioning }}{\downarrow},\left(\begin{array}{c}
\text { left right } \\
C_{n}+C_{n-1} \\
n
\end{array}\right)+\left(\frac{\stackrel{C_{1}}{\downarrow}+C_{n-2}}{n}\right)+\ldots+\left(\frac{C_{n-1}+C_{0}}{n}\right) \\
\text { - Multiply both sides by } n \text { and collect terms: }
\end{gathered}
$$

$$
n C_{n}=n(n+1)+2\left(C_{0}+C_{1}+\ldots+C_{n-1}\right)
$$

- Subtract from this equation the same equation for $n-1$:

$$
n C_{n}-(n-1) C_{n-1}=2 n+2 C_{n-1}
$$

- Rearrange terms and divide by $n(n+1)$:

$$
\frac{C_{n}}{n+1}=\frac{C_{n-1}}{n}+\frac{2}{n+1}
$$

Quicksort: average-case analysis

- Repeatedly apply previous equation:

$$
\begin{aligned}
\frac{C_{n}}{n+1} & =\frac{C_{n-1}}{n}+\frac{2}{n+1} \\
& =\frac{C_{n-2}}{n-1}+\frac{2}{n}+\frac{2}{n+1} \\
& =\frac{C_{n-3}}{n-2}+\frac{2}{n-1}+\frac{2}{n}+\frac{2}{n+1} \\
& =\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+\ldots+\frac{2}{n+1}
\end{aligned}
$$

- Approximate sum by an integral:

$$
\begin{aligned}
C_{n} & =2(n+1)\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots+\frac{1}{n+1}\right) \\
& \sim 2(n+1) \int_{3}^{n+1} \frac{1}{x} d x
\end{aligned}
$$

- Finally, the desired result:

$$
C_{n} \sim 2(n+1) \ln n \approx 1.39 n \lg n
$$

Quicksort: summary of performance characteristics

Quicksort is a randomized algorithm.

- Guaranteed to be correct.
- Running time depends on random shuffle.

Average case. Expected number of compares is $\sim 1.39 n \lg n$.

- 39\% more compares than mergesort.
- Faster than mergesort in practice because of less data movement.

Best case. Number of compares is $\sim n \lg n$.
Worst case. Number of compares is $\sim 1 / 2 n^{2}$.
[but more likely that lightning bolt strikes computer during execution]

Three different types of average-case complexity

In this course, for simplicity, we'll ignore the distinction between average case and expected complexity.

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.

- Partitioning: constant extra space.
- Function-call stack: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.
Pf. [by counterexample]

\mathbf{i}	j	0	1	2	3
		$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	$\mathrm{~A}_{1}$	C_{2}	C_{1}
0	1	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	C_{2}	C_{1}

Quicksort: practical improvement

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

2.3 QuICKSORT

- quicksort
- selection

Algorithms

- duplicate keys
- system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Selection

Goal. Given an array of n items, find item of rank k.
Ex. Min $(k=0), \max (k=n-1)$, median $(k=n / 2)$.

Use theory as a guide.

- Easy $n \log n$ upper bound. How?
- Easy n upper bound for $k=0,1,2$. How?
- Easy n lower bound. Why?

Which is true?

- $n \log n$ lower bound?
$\longleftarrow \quad$ is selection as hard as sorting?
- n upper bound?
\longleftarrow is there a linear-time algorithm?

Quick-select

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

Proposition. Quick-select takes linear time on average.

Intuition:
Each partitioning step splits array approximately in half:
$n+n / 2+n / 4+\ldots+1 \sim 2 n$ compares.

2.3 QuICKSORT

Algorithms

- quicksort
- selection
- duplicate keys
-systeml sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

- Sort population by age.
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Duplicate keys: stop on equal keys

Our partitioning subroutine stops both scans on equal keys.

Q. Why not continue scans on equal keys?

Quicksort: quiz 2

What is the result of partitioning the following array (skip over equal keys)?

A. $\begin{array}{llllllllllllllllllllll}\text { A } & \text { A } & \text { A } & \text { A } & A & A & A & A & A & A & A & A & A & A & A & A\end{array}$

C. $\begin{array}{lllllllllllllllllllllllllll}A & A & A & A & A & A & A & A & A & A & A & A & A & A & A & A\end{array}$
D. I don't know.

Quicksort: quiz 3

What is the result of partitioning the following array (stop on equal keys)?

A. $\begin{array}{lllllllllllllllllll}\text { A } & \text { A } & A & A & A & A & A & A & A & A & A & A & A & A & A & A\end{array}$

Partitioning an array with all equal keys

Duplicate keys: partitioning strategies

Bad. Don't stop scans on equal keys.
[$\sim 1 / 2 n^{2}$ compares when all keys equal]
B A A B A B B B C C C
A A A A A A A A A A

Good. Stop scans on equal keys.
[$\sim n \lg n$ compares when all keys equal]
B A A B A B C C B C B
A A A A A A A A A A A

Better. Put all equal keys in place. How?
[$\sim n$ compares when all keys equal]
A A A B B B B B C C C
A A A A A A A A A A A

3-way partitioning

Goal. Partition array into three parts so that:

- Entries in the left part are less than the partitioning item.
- Entries in the left part are equal to the partitioning item.
- Entries in the left part are greater than the partitioning item.

3-way partitioning algorithm. [Edsger Dijkstra]

- Now incorporated into C library qsort() and Java 6 system sort.

Dijkstra's 3-way partitioning algorithm: demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

P_{1}	D	B	X	W	P_{2}	P_{3}	V	P4	A	P_{5}	C	Y	Z

invariant

Dijkstra's 3-way partitioning algorithm: demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int lt = lo, gt = hi;
    Comparable v = a[lo];
    int i = lo + 1;
    while (i <= gt)
    {
        int cmp = a[i].compareTo(v);
        if (cmp < 0) exch(a, 1t++, i++);
    else if (cmp > 0) exch(a, i, gt--);
    else i++;
    }
```

 sort(a, 1o, 1t - 1);
 sort(a, gt + 1, hi);
 \}

3-way quicksort: visual trace

 " "equat porpritioning element (4. แun แ1! "

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 n^{2}$	$1 / 2 n^{2}$	$1 / 2 n^{2}$	n exchanges
insertion	\checkmark	\checkmark	n	$1 / 4 n^{2}$	$1 / 2 n^{2}$	use for small n or partially sorted
merge		\checkmark	$1 / 2 n \lg n$	$n \lg n$	$n \lg n$	$n \log n$ guarantee; stable
quick	\checkmark		$n \lg n$	$2 n \ln n$	$1 / 2 n^{2}$	$n \log n$ probabilistic guarantee; fastest in practice
3-way quick	\checkmark		n	$2 n \ln n$	$1 / 2 n^{2}$	improves quicksort when duplicate keys
?	\checkmark	\checkmark	n	$n \lg n$	$n \lg n$	holy sorting grail

2.3 QUICKSORT

Algorithms

- quicksort
- selection
- duplicate keys
, system sorts

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

System sort in Java 8

Arrays.sort().

- Has one method for objects that are Comparable.
- Has an overloaded method for each primitive type.
- Has an overloaded method for use with a Comparator.
- Has overloaded methods for sorting subarrays.

Algorithms. Use two pivots for partitioning; recursively sort three subarrays

- Dual-pivot quicksort for primitive types.
- Timsort for reference types.

Optimized mergesort
Q. Why use different algorithms for primitive and reference types?
Q. Why so many overloaded methods?

Bottom line. Use the system sort!

[^0]: http://www.sorting-algorithms.com/quick-sort

