2.2 Mergesort

- mergesort
- bottom-up mergesort
- sorting complexity
- divide-and-conquer

Robert Sedgewick I Kevin Wayne

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of $20^{\text {th }}$ century in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]

2.2 Mergesort

- mergesort
- bottom-uptmergesort

Algorithms

Robert Sedgewick I Kevin Wayne

- sorting complexity

- divide-and-conauer
https://algs4.cs.princeton.edu

Mergesort

Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge the two halves.

input	M	E	R	G	E	S	0	R	T	E	X	A	M	P	L	E
sort left half	E	E	G	M	O	R	R	S	T	E	X	A	M	P	L	E
sort right half	E	E	G	M	O	R	R	S	A	E	E	L	M	P	T	X
merge results	A	E	E	E	E	G	L	M	M	O	P	R	R	S	T	X

Abstract in-place merge demo

Goal. Given two sorted subarrays $a[1 o]$ to $a[m i d]$ and $a[m i d+1]$ to $a[h i]$, replace with sorted subarray $a[1 o]$ to $a[h i]$.

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) \{

```
    for (int k = 1o; k <= hi; k++) copy
        aux[k] = a[k];
```


k

```
a[] A G G H I I N L M
```

Mergesort quiz 1

How many calls does merge() make to less() in order to merge two sorted subarrays, each of length $n / 2$, into a sorted array of length n ?
A. $\quad \sim 1 / 4 n$ to $\sim 1 / 2 n$
B. $\quad \sim 1 / 2 n$
C. $\sim 1 / 2 n$ to $\sim n$
D. $\sim n$

Mergesort: Java implementation

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= 10) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, 1o, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
```

 public static void sort(Comparable[] a)
 \{
 Comparable[] aux = new Comparable[a.1ength];
 sort(a, aux, 0, a.length - 1);
 \}
 \}

Mergesort: trace

Mergesort quiz 2
Which of the following subarray lengths will occur when running mergesort on an array of length 12?
A. $\{1,2,3,4,6,8,12\}$
B. $\{1,2,3,6,12\}$
C. $\{1,2,4,8,12\}$
D. $\{1,3,6,9,12\}$

Mergesort: animation

50 random items

A algorithm position in order current subarray not in order

Mergesort: animation

50 reverse-sorted items

A algorithm position
in order
current subarray
not in order
http:/ / www.sorting-algorithms.com/merge-sort

Mergesort: empirical analysis

Running time estimates:

- Laptop executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (n^{2})			mergesort (n log n)		
	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Bottom line. Good algorithms are better than supercomputers.

Mergesort analysis: number of compares

Proposition. Mergesort uses $\leq n \lg n$ compares to sort any array of length n.

Pf sketch. The number of compares $C(n)$ to mergesort an array of length n satisfies the recurrence:

We solve this simpler recurrence, and assume n is a power of 2:

$$
D(n)=2 D(n / 2)+n, \text { for } n>1, \text { with } D(1)=0 .
$$

result holds for all n
(analysis cleaner in this case)

Divide-and-conquer recurrence

Proposition. If $D(n)$ satisfies $D(n)=2 D(n / 2)+n$ for $n>1$, with $D(1)=0$, then $D(n)=n \lg n$.

Pf by picture. [assuming n is a power of 2]

Mergesort analysis

Key point. Any algorithm with the following structure takes $\Theta(n \log n)$ time:

```
public static void f(int n)
{
    if (n == 0) return;
    f(n/2); «}\mathrm{ solve two problems
    f(n/2); «
    linear (n); « do a linear amount of work
}
```

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: number of array accesses

Proposition. Mergesort uses $\leq 6 n \lg n$ array accesses to sort any array of length n.

Pf sketch. The number of array accesses $A(n)$ satisfies the recurrence:

$$
A(n) \leq A(\lceil n / 2\rceil)+A(\lfloor n / 2\rfloor)+6 n \text { for } n>1 \text {, with } A(1)=0 \text {. }
$$

[Rest of the proof is similar to the analysis of number of compares.]

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to n.
Pf. The array aux[] needs to be of length n for the last merge.
two sorted subarrays

$$
\begin{array}{llllllllllllllllllll}
\text { A } & \mathrm{C} & \mathrm{D} & \mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{M} & \mathrm{~N} & \mathrm{U} & \mathrm{~V} & \mathrm{~B} & \mathrm{E} & \mathrm{~F} & \mathrm{~J} & \mathrm{O} & \mathrm{P} & \mathrm{Q} & \mathrm{R} & \mathrm{~S} & \mathrm{~T}
\end{array}
$$

merged result
"Essentially no extra memory"

Def. A sorting algorithm is in-place if it uses $\leq c \log n$ extra memory.
Ex. Insertion sort and selection sort.

Challenge 1 (not hard). Use aux[] array of length $\sim 1 / 2 n$ instead of n.
Challenge 2 (very hard). In-place merge.

Mergesort quiz 3

Is our implementation of mergesort stable?
A. Yes.
B. No, but it can be easily modified to be stable.
C. No, mergesort is inherently unstable.
D. I don't remember what stability means.
a sorting algorithm is stable if it preserves the relative order of equal keys
$\begin{array}{lllll}C & A_{1} & B & A_{2} & A_{3}\end{array}$
sorted
$\begin{array}{lllll}A_{3} & A_{1} & A_{2} & B & C\end{array}$
not stable

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = 1o + (hi - 1o) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
{
    for (int k = 1o; k <= hi; k++)
        aux[k] = a[k];
    int i = 1o, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
```

0	1	2	3	4
A_{1}	A_{2}	A_{3}	B	D

5	6	7	8	9	10
$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	C	E	F	G

Pf. Takes from left subarray if equal keys.

Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

Stop if already sorted.

- Is largest item in first half \leq smallest item in second half?
- Helps for partially ordered arrays.

$$
\begin{array}{llllllllllllllllllll}
A & B & C & D & E & F & G & H & I & O & M & N & O & P & Q & R & S & T & U & V
\end{array}
$$

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

Java 6: Arrays. sort() uses mergesort for sorting objects, with the above tricks.

2.2 Mergesort

- mergesort

- bottom-up mergesort

Algorithms

- sorting complexity

- divide-and-conquer

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Bottom-up mergesort

Basic plan.

- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size $2,4,8, \ldots$.

```
                                a[i]
sz = 1
merge(a, aux, 0, 0, 1)
merge(a, aux, 2, 2, 3)
merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
sz=2
merge(a, aux, 0, 1, 3)
merge(a, aux, 4, 5, 7)
merge(a, aux, 8, 9, 11)
merge(a, aux, 12, 13, 15)
sz=4
merge(a, aux, 0, 3, 7) E E G M O R R R S A E T X E E L M M P
sz = 8
merge(a, aux, 0, 7, 15)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{a[i]} \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & 14 & 15 \\
\hline M & E & R & G & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline E & M & R & G & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & T & E & X & A & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & E & T & X & A & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & E & T & A & X & M & P & L & E \\
\hline E & M & G & R & E & S & 0 & R & E & T & A & X & M & P & L & \\
\hline E & M & G & R & E & S & 0 & R & E & T & A & X & M & P & E & L \\
\hline E & G & M & R & E & S & 0 & R & E & T & A & X & M & P & E & \\
\hline E & G & M & R & E & 0 & R & S & E & T & A & X & M & P & E & \\
\hline E & G & M & R & E & 0 & R & S & A & E & T & X & M & P & E & \\
\hline E & G & M & R & E & 0 & R & S & A & E & T & X & E & L & M & P \\
\hline E & E & G & M & 0 & R & R & S & A & E & T & X & , & L & M & \\
\hline E & E & G & M & 0 & R & R & S & A & E & E & L & M & P & T & \\
\hline A & E & E & E & E & G & L & M & M & 0 & P & R & R & S & & \\
\hline
\end{tabular}
```


Bottom-up mergesort: Java implementation

```
public class MergeBU
{
    private static void merge(...)
    { /* as before */ }
    public static void sort(Comparable[] a)
    {
            int n = a.length;
            Comparable[] aux = new Comparable[n];
            for (int sz = 1; sz < n; sz = sz+sz)
            for (int 1o = 0; 10 < n-sz; 1o += sz+sz)
                merge(a, aux, 1o, 1o+sz-1, Math.min(1o+sz+sz-1, n-1));
    }
}
```

Bottom line. Simple and non-recursive version of mergesort.

Mergesort: visualizations

||||||||||||||||||||||||||||||||||......||m||||||||||||||...|||||||||||||||.||..||

top-down mergesort (cutoff = 12)

 ...|||||||||...|||||||||...||||||||....|u||||||...n||||||||..||n||||||....|l|||||||||||.||...||

||||||||||||||||||......||||||||||||||||......||||||||||||||||......|.||||||||||||||||

Mergesort quiz 4
Which is faster in practice for $n=2^{20}$, top-down mergesort or bottom-up mergesort?
A. Top-down (recursive) mergesort.
B. Bottom-up (non-recursive) mergesort.
C. No observable difference.
D. I don't know.

Hint: the answer depends on
concepts you'll learn in COS 217.

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 n^{2}$	$1 / 2 n^{2}$	$1 / 2 n^{2}$	n exchanges
insertion	\checkmark	\checkmark	n	$1 / 4 n^{2}$	$1 / 2 n^{2}$	use for small n or partially ordered
shell	\checkmark		$n \log _{3} n$?	$c n^{3 / 2}$	tight code; subquadratic
merge		\checkmark	$1 / 2 n \lg n$	$n \lg n$	$n \lg n$	$n \log n$ guarantee; stable
?	\checkmark	\checkmark	n	$n \lg n$	$n \lg n$	holy sorting grail

2.2 Mergesort

- mergesort
- batom-uptmergesort
- sorting complexity
-divide-and=conquer

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.
Cost model. Operation counts.
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.
lower bound \sim upper bound

model of computation	comparison tree	\# compares	can access information only through compares
cost model	$\sim n \lg n$ from mergesort		
upper bound	$?$		
lower bound	$?$		
optimal algorithm Comparable framework)			

Comparison tree (for 3 distinct keys a, b, and c)

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must make at least $\lg (n!) \sim n \lg n$ compares in the worst case.

Pf.

- Assume array consists of n distinct values a_{1} through a_{n}.
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^{h}$ leaves.
- n ! different orderings $\Rightarrow n$! reachable leaves.

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must make at least $\lg (n!) \sim n \lg n$ compares in the worst case.

Pf.

- Assume array consists of n distinct values a_{1} through a_{n}.
- Worst-case number of compares = height h of pruned comparison tree.
- Binary tree of height h has $\leq 2^{h}$ leaves.
- n ! different orderings $\Rightarrow n$! reachable leaves.

$$
\begin{gathered}
2^{h} \geq \text { \# reachable leaves }=n! \\
\Rightarrow h \geq \lg (n!) \\
\\
\quad \sim n \lg n \\
\\
\quad \uparrow \\
\text { Stirling's formula }
\end{gathered}
$$

Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

model of computation	comparison tree
cost model	\# compares
upper bound	$\sim n \lg n$
lower bound	$\sim n \lg n$
optimal algorithm	\sim mergesort
complexity of sorting	

First goal of algorithm design: optimal algorithms.

Complexity results in context

Compares? Mergesort is optimal with respect to number compares. Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees $\sim 1 / 2 n \lg n$ compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

Commercial break
Q. Why doesn't this Skittles sorter violate the sorting lower bound?

https://www.youtube.com/watch?v=tSEHDBSynVo

Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

- The initial order of the input array.

Ex: insertion sort requires only a linear number of compares on partially sorted arrays.

- The distribution of key values.

Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned]

- The representation of the keys.

Ex: radix sorts require no key compares - they access the data via character/digit compares. [stay tuned]

A brief history of sorting: Hollerith census tabulator (1890s)

IBM card sorter (1940s)

Big O notation (and cousins)

notation	provides	example	shorthand for
Tilde	leading term	$\sim 1 / 2 n^{2}$	$\begin{gathered} 1 / 2 n^{2} \\ 1 / 2 n^{2}+22 n \log n+3 n \end{gathered}$
Big Theta	order of growth	$\Theta\left(n^{2}\right)$	$\begin{gathered} 1 / 2 n^{2} \\ 10 n^{2} \\ 5 n^{2}+22 n \log n+3 n \end{gathered}$
Big 0	upper bound	$\mathrm{O}\left(n^{2}\right)$	$\begin{gathered} 10 n^{2} \\ 100 n \\ 22 n \log n+3 n \end{gathered}$
Big Omega	lower bound	$\Omega\left(n^{2}\right)$	$\begin{gathered} 1 / 2 n^{2} \\ n^{5} \\ n^{3}+22 n^{\log n+3 n} \end{gathered}$

Understanding the notation

What's wrong with this statement? How would you correct it?
Any compare-based sorting algorithm must make at least $\mathrm{O}(n \log n)$ compares in the worst case.
"At least $\mathrm{O}(n \log n)$ " is a nonsensical (but frequently heard) expression.

Correct: any compare-based sorting algorithm must make $\Omega(n \log n)$ compares in the worst case.

No need to say "at least $\Omega(n \log n)$ " - that's implicit in the definition of Ω.

2.2 Mergesort

- mergesort
- bottom-up mergesort

Algorithms

Sorting complexity

- divide-and-conquer

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

SORTING A LINKED LST

Problem. Given a singly linked list, rearrange its nodes in sorter order.

Version 1. Linearithmic time, linear extra space.
Version 2. Linearithmic time, logarithmic (or constant) extra space.

