1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Steps to developing a usable algorithm to solve a computational problem.

1. Model the problem
2. Design a data structure & algorithm
3. Efficient?
 - Yes: Solve the problem
 - No: Try again
4. Understand why not
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Problem: dynamic connectivity

Given n vertices, support two operations:

- Add edge: directly connect two vertices with an edge.
- Connection query: is there a path connecting two vertices?

```
add edge 4–3
add edge 3–8
add edge 6–5
add edge 9–4
add edge 2–1
are 8 and 9 connected? ✔️
are 5 and 7 connected? ✗
add edge 5–0
add edge 7–2
add edge 6–1
add edge 1–0
are 5 and 7 connected? ✔️
```
A larger connectivity example

Q. Is there a path connecting vertices v and w?

A. Yes.

Finding a path is a slightly harder problem.
(stay tuned for graph algorithms in Chapter 4)
Modeling the dynamic-connectivity problem

Note. Dynamic means not all edges given at once; interspersed with connection queries.

Key idea. Maintain disjoint sets that correspond to connected components.

Connected component. Maximal set of vertices that are mutually connected.
Modeling the dynamic-connectivity problem

Key idea. Maintain disjoint sets that correspond to connected components.

- Add edge between vertices v and w.
- Are vertices v and w connected?

add edge 2–5

- Initial state: 3 connected components
 - $\{0\}$, $\{1, 4, 5\}$, $\{2, 3, 6, 7\}$
- Add edge between vertices 2 and 5
 - 2 connected components
 - $\{0\}$, $\{1, 2, 3, 4, 5, 6, 7\}$

are vertices 5 and 6 connected?

- Find $\text{find}(5) = \text{find}(6)$
 - Yes

union(2, 5)

- Initial state: 3 disjoint sets
 - $\{0\}$, $\{1, 4, 5\}$, $\{2, 3, 6, 7\}$
- Union $\text{union}(2, 5)$
 - 2 disjoint sets
 - $\{0\}$, $\{1, 2, 3, 4, 5, 6, 7\}$

Connection queries are modeled with **two** calls to find().
Disjoint sets. A collection of sets; each element in exactly one set.

Find. Return a “canonical” element in the set containing the given vertex.
Union. Merge the set containing the first vertex with the set containing the second.

\[
\begin{align*}
\text{find}(1) = \text{find}(4) = \text{find}(5) &= 4 \\
\{0\} \cup \{1, 4, 5\} \cup \{2, 3, 6, 7\} &\xrightarrow{\text{union}(2, 5)} \{0\} \cup \{1, 2, 3, 4, 5, 6, 7\}
\end{align*}
\]

8 elements, 3 disjoint sets

2 disjoint sets

Simplifying assumption. The \(n\) elements are named 0, 1, \ldots, \(n - 1\).
Goal. Design an efficient union–find data type.

- Number of elements n can be huge.
- Number of operations m can be huge.
- Union and find operations can be intermixed.

Union–find data type (API*)

```java
public class UF
{
    UF(int n)
    { initialize union–find data structure with $n$ singleton sets (0 to $n – 1$)
    }

    void union(int p, int q)
    { merge sets containing elements $p$ and $q$ }

    int find(int p)
    { canonical element in set containing $p$ (0 to $n – 1$) }
}
```

Application Programing Interface.
Steps to developing a usable algorithm to solve a computational problem.

1. Model the problem
2. Design a data structure & algorithm
3. Efficient?
 - Yes: Solve the problem
 - No: Try again
4. Understand why not
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Quick-find [eager approach]

Data structure.

- Integer array \(id[] \) of length \(n \).
- Interpretation: \(id[p] \) is canonical element in the set containing \(p \).

\[\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0 & 1 & 1 & 8 & 8 & 0 & 0 & 1 & 8 & 8 \\
\end{array}\]

- \(id[i] = 0 \):
 - \{ 0, 5, 6 \}
- \(id[i] = 1 \):
 - \{ 1, 2, 7 \}
- \(id[i] = 8 \):
 - \{ 3, 4, 8, 9 \}

3 disjoint sets

Q. How to implement \(\text{find}(p) \)?

A. Easy, just return \(id[p] \).

Q. How to implement \(\text{union}(p, q) \)?

(i.e. merge the sets containing \(p \) & \(q \).)
Quick-find [eager approach]

Data structure.
- Integer array \(\text{id}[]\) of length \(n\).
- Interpretation: \(\text{id}[p]\) is canonical element in the set containing \(p\).

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\text{id}[] & 1 & 1 & 1 & 8 & 8 & 1 & 1 & 1 & 8 & 8 \\
\end{array}
\]

union(6, 1)

Problem: many values can change

Q. How to implement \(\text{union}(p, q)\)?

A. Change all entries whose identifier equals \(\text{id}[p]\) to \(\text{id}[q]\) (or vice versa).
Quick-find: Java implementation

```java
public class QuickFindUF {
    private int[] id;

    public QuickFindUF(int n) {
        id = new int[n];
        for (int i = 0; i < n; i++)
            id[i] = i;
    }

    public int find(int p) {
        return id[p];
    }

    public void union(int p, int q) {
        int pid = id[p];
        int qid = id[q];
        for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = qid;
    }
}
```

set id of each element to itself (<i>n</i> array accesses)

return the id of <i>p</i> (1 array access)

change all entries with <i>id[p]</i> to <i>id[q]</i> (<i>n + 2</i> to <i>2n + 2</i> array accesses)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

Rationale.
- Accessing memory is much slower than operations within CPU.
- If we had a more complex cost model (that included arithmetic ops), the constants might change, but not the order of growth.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of n union operations on n elements takes more than n^2 array accesses.
Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

model the problem ✓

design a data structure & algorithm

efficient?

understand why not

try again

no

yes

solve the problem
1.5 **Union–Find**

- union–find data type
- quick-find
- quick-union
- improvements
- applications

[1.5](https://algs4.cs.princeton.edu)
Data structure.

- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

![Diagram showing disjoint sets and roots](image)

Q. How to implement `find(p)` operation?

A. Return *root* of tree containing `p`.

- `parent of 3 is 4`
- `root of 3 is 9`
Quick-union quiz

Data structure.

- Integer array \(\text{parent}[\cdot] \) of length \(n \), where \(\text{parent}[i] \) is parent of \(i \) in tree.
- Interpretation: elements in one tree correspond to one set.

How to implement \(\text{union}(3, 5) \) ?

A. Set \(\text{parent}[3] = 5 \).

B. Set \(\text{parent}[9] = 5 \).

C. Set \(\text{parent}[9] = 6 \).

D. Set \(\text{parent}[2] = \text{parent}[3] = \text{parent}[4] = \text{parent}[9] = 6 \).
Quick-union [lazy approach]

Data structure.

- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

![Diagram of a tree with numbers representing parents]

Q. How to implement `union(p, q)`?

A. Set parent of `p`’s root to parent of `q`’s root.
Quick-union [lazy approach]

Data structure.

- Integer array $\text{parent}[]$ of length n, where $\text{parent}[i]$ is parent of i in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement $\text{union}(p, q)$?
A. Set parent of p’s root to parent of q’s root.
Quick-union demo
public class QuickUnionUF {
 private int[] parent;

 public QuickUnionUF(int n) {
 parent = new int[n];
 for (int i = 0; i < n; i++)
 parent[i] = i;
 }

 public int find(int p) {
 while (p != parent[p])
 p = parent[p];
 return p;
 }

 public void union(int p, int q) {
 int r1 = find(p);
 int r2 = find(q);
 parent[r1] = r2;
 }
}

set parent of each element to itself (n array accesses)
chase parent pointers until reach root (depth of p array accesses)
change root of p to point to root of q (depth of p and q array accesses)
Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(n)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>(n)</td>
<td>(n)</td>
<td>(n)</td>
</tr>
</tbody>
</table>

number of array accesses (ignoring leading constant)

Quick-find defect:
Union too expensive (could be more than \(n\) array accesses).

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be more than \(n\) array accesses).
Steps to developing a usable algorithm to solve a computational problem.

1. model the problem
2. design a data structure & algorithm
3. efficient?
 - yes
 - no
 - try again

4. understand why not
5. solve the problem
1.5 **Union–Find**

- union–find data type
- quick-find
- quick-union
- improvements
- applications
When merging two trees, which strategy is most effective?

A. Link the root of the **smaller** tree to the root of the **larger** tree.

B. Link the root of the **larger** tree to the root of the **smaller** tree.

C. Link the root of the **shorter** tree to the root of the **taller** tree.

D. Link the root of the **taller** tree to the root of the **shorter** tree.
Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of elements).
- Always link root of smaller tree to root of larger tree.

Diagram:

- Quick-union:
 - Tree structure with labels indicating size and direction of links.
 - Reasonable alternative: union by height/rank.
 - Might put the larger tree lower.

- Weighted:
 - Tree structure with labels indicating size and direction of links.
 - Always chooses the better alternative.
Suppose that the `parent[]` array during weighted quick-union is:

```
0 0 0 0 0 0 7 8 8 8
```

Which `parent[]` entry changes during `union(2, 6)`?

A. `parent[0]`
B. `parent[2]`
C. `parent[6]`
D. `parent[8]`
Suppose that the parent[] array during weighted quick-union is:

Which parent[] entry changes during union(2, 6)?

A. parent[0]
B. parent[2]
C. parent[6]
D. parent[8]
Quick-union vs. weighted quick-union: larger example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

average distance to root: 5.11

average distance to root: 1.52
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array `size[i]` to count number of elements in the tree rooted at `i`, initially 1.
- Find: identical to quick-union.
- Union: link root of smaller tree to root of larger tree; update `size[]`.

```java
public void union(int p, int q)
{
    int r1 = find(p);
    int r2 = find(q);
    if (r1 == r2) return;
    if (size[r1] >= size[r2])
    {
        int temp = r1; r1 = r2; r2 = temp;
    }
    parent[r1] = r2;
    size[r2] += size[r1];
}
```

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
Running time.

- **Find:** takes time proportional to depth of \(p \).
- **Union:** takes constant time, given two roots.

Proposition. Depth of any node \(x \) is at most \(\lg n \).

In computer science, \(\lg \) means base-2 logarithm.
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\log_2 n$.

Pf. What causes the depth of element x to increase?
Increases by 1 when root of tree T_1 containing x is linked to root of tree T_2.
- The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
- Size of tree containing x can double at most $\log_2 n$ times. Why?
Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\log n$.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Initialize</th>
<th>Union</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

Number of array accesses (ignoring leading constant)

log mean logarithm, for some constant base
Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>$m n$</td>
</tr>
<tr>
<td>quick-union</td>
<td>$m n$</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>$n + m \log n$</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>$n + m \log n$</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>$n + m \log^{*} n$</td>
</tr>
</tbody>
</table>

order of growth for m union–find operations on a set of n elements

Ex. [10^9 unions and finds with 10^9 elements]
- Weighted quick-union reduces run time from 30 years to 6 seconds.
- Supercomputer won’t help much; good algorithm enables solution.
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Union–find applications

- Percolation.
- Terrain analysis.
- Contiguous regions in images.
- Least common ancestors in trees.
- Games (Go, Hex, maze generation).
- Minimum spanning tree algorithms.
- Equivalence of finite state automata.
- Hoshen–Kopelman algorithm in physics.
- Hindley–Milner polymorphic type inference.
- Compiling equivalence statements in Fortran.
- Connectedness of nodes in a computer network.