Algorithms

Textbook section

Robert Sedgewick \| Kevin Wayne

1.5 UNION-FIND

- union-find data type
- quick-find
- quick-union
- improvements
- applications

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

1.5 UNION-FIND

- union-find data type
- quick-find

Algorithms

Robert Sedgewick | Kevin Wayne

- quick-union
- improvements
* applications

Problem: dynamic connectivity

Given n vertices, support two operations:

- Add edge: directly connect two vertices with an edge.
- Connection query: is there a path connecting two vertices?
add edge 4-3
add edge 3-8
add edge 6-5
add edge 9-4
add edge 2-1
are 8 and 9 connected?

are 5 and 7 connected?
add edge 5-0
add edge 7-2
add edge 6-1
add edge 1-0
are 5 and 7 connected?

A larger connectivity example

Q. Is there a path connecting vertices v and w ?
finding a path is a slightly harder problem
(stay tuned for graph algorithms in Chapter 4)
A. Yes.

Modeling the dynamic-connectivity problem

Note. Dynamic means not all edges given at once; interspersed with connection queries.

Key idea. Maintain disjoint sets that correspond to connected components.

Connected component. Maximal set of vertices that are mutually connected.

3 connected components

$$
\begin{gathered}
\{0\}\{1,4,5\}\{2,3,6,7\} \\
3 \text { disjoint sets }
\end{gathered}
$$

Modeling the dynamic-connectivity problem

Key idea. Maintain disjoint sets that correspond to connected components.

- Add edge between vertices v and w.
- Are vertices v and w connected?
add edge 2-5

3 connected components
union(2, 5)

$$
\begin{gathered}
\{0\}\{1,4,5\}\{2,3,6,7\} \\
3 \text { disjoint sets }
\end{gathered}
$$

are vertices 5 and 6 connected?

2 connected components

$$
\begin{aligned}
& \text { find }(5)==\text { find }(6) \quad v \\
& \qquad\{0\}\{1,2,3,4,5,6,7\} \\
& \quad 2 \text { disjoint sets }
\end{aligned}
$$

Connection queries are modeled with two calls to find().

Union-find data type

Disjoint sets. A collection of sets; each element in exactly one set.

Find. Return a "canonical" element in the set containing the given vertex. Union. Merge the set containing the first vertex with the set containing the second.

```
find}(1)=\mathrm{ find (4) = find(5) = 4 union(2, 5)
{0}{1,4, 5}{2,3,6,7 }
    8 elements, 3 disjoint sets
    {0}{1, 2, 3, 4, 5, 6, 7 }
    2 disjoint sets
```

Simplifying assumption. The n elements are named $0,1, \ldots, n-1$.

Union-find data type (API*)

Goal. Design an efficient union-find data type.

- Number of elements n can be huge.
- Number of operations m can be huge.
- Union and find operations can be intermixed.

```
public class UF
```

UF (int n) \begin{tabular}{c}

initialize union-find data struct
with n singleton sets $(0$ to $n-$

void union(int p, int q)

merge sets containing

elements p and q
\end{tabular}

fint (int p) | canonical element in set |
| :--- |
| containing $p(0$ to $n-1)$ |

*Application Programing Interface.

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

1.5 UNION-FIND

union-find data type

- quick-find
-quick zunión
- improvements
- applications
https://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure.

- Integer array id[] of length n.
- Interpretation: id[p] is canonical element in the set containing p.

Q. How to implement find (p) ?
A. Easy, just return id[p].
Q. How to implement union (p, q) ? (i.e. merge the sets containing $p \& q$).

Quick-find [eager approach]

Data structure.

- Integer array id[] of length n.
- Interpretation: id[p] is canonical element in the set containing p.

Q. How to implement union (p, q) ?
A. Change all entries whose identifier equals id[p] to id[q] (or vice versa).

Quick-find: Java implementation

```
public class QuickFindUF
{
    private int[] id;
    public QuickFindUF(int n)
    {
        id = new int[n];
        for (int i = 0; i < n; i++)
            id[i] = i;
    }
    public int find(int p)
    { return id[p]; }
    public void union(int p, int q)
    {
        int pid = id[p];
        int qid = id[q];
        for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = qid;
    }
}
```


return the id of p
(1 array access)
set id of each element to itself (n array accesses) (1 array access)
change all entries with id[p] to id[q] ($n+2$ to $2 n+2$ array accesses)

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

Rationale.

- Accessing memory is much slower than operations within CPU.
- If we had a more complex cost model (that included arithmetic ops), the constants might change, but not the order of growth.

number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of n union operations on n elements takes more than n^{2} array accesses.
quadratic

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

1.5 UNION-FIND

- union-find data type
- quick-find
- quick-union
- improvements
- applications
https://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.

- Integer array parent[] of length n, where parent[i] is parent of i in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement find(p) operation?
A. Return root of tree containing p.

Quick-union quiz

Data structure.

- Integer array parent[] of length n, where parent[i] is parent of i in tree.
- Interpretation: elements in one tree correspond to one set.

How to implement union(3, 5)?
A. Set parent[3] $=5$.
B. Set parent[9] = 5 .
C. Set parent[9] = 6 .
D. Set parent[2] = parent[3] $=\operatorname{parent}[4]=\operatorname{parent}[9]=6$.

Quick-union [lazy approach]

Data structure.

- Integer array parent[] of length n, where parent[i] is parent of i in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement union (p, q) ?
A. Set parent of p 's root to parent of q 's root.

Quick-union [lazy approach]

Data structure.

- Integer array parent[] of length n, where parent[i] is parent of i in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement union (p, q) ?
A. Set parent of p 's root to parent of q 's root.

Quick-union demo

(0) (1) (2) (3) (4) (5) (8) (2) (8) (3)

Quick-union: Java implementation

```
public class QuickUnionUF
{
    private int[] parent;
    public QuickUnionUF(int n)
    {
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }
    public int find(int p)
    {
        while (p != parent[p])
            p = parent[p];
```



``` chase parent pointers until reach root (depth of p array accesses)
        return p;
    }
    public void union(int p, int q)
    {
        int r1 = find(p);
        int r2 = find(q);
        parent[r1] = r2;
    }
}
```


Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find
quick-find	n	n	1
quick-union	n	n	n

number of array accesses (ignoring leading constant)

Quick-find defect:

Union too expensive (could be more than n array accesses).

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be more than n array accesses).

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm to solve a computational problem.

1.5 UNION-FIND

- union-find data type

Algorithms

Robert Sedgewick | Kevin Wayne

- quick-find
- auick-union
- improvements
r applications

Weighted quick-union quiz

When merging two trees, which strategy is most effective?

A. Link the root of the smaller tree to the root of the larger tree.
B. Link the root of the larger tree to the root of the smaller tree.
C. Link the root of the shorter tree to the root of the taller tree.
D. Link the root of the taller tree to the root of the shorter tree.

shorter and larger tree $($ height $=2$, size $=14)$

taller and smaller tree $($ height $=5$, size $=9$)

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of elements).
- Always link root of smaller tree to root of larger tree.

weighted

Weighted quick-union quiz
Suppose that the parent[] array during weighted quick-union is:

```
parent[] }0
```


Which parent[] entry changes during union(2, 6)?
A. parent[0]
B. parent[2]
C. parent[6]
D. parent[8]

Weighted quick-union quiz

Suppose that the parent[] array during weighted quick-union is:

parent[]

Which parent[] entry changes during union(2,6)?
A. parent [0]
B. parent [2]
C. parent [6]
D. parent [8]

Quick-union vs. weighted quick-union: larger example

average distance to root: 5.11
weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i] to count number of elements in the tree rooted at i, initially 1.

- Find: identical to quick-union.
- Union: link root of smaller tree to root of larger tree; update size[].

```
public void union(int p, int q)
{
    int r1 = find(p);
    int r2 = find(q);
    if (r1 == r2) return;
    if (size[r1] >= size[r2])
    { int temp = r1; r1 = r2; r2 = temp; }
```



```
    parent[r1] = r2;
    size[r2] += size[r1];
```


\}
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n$.

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n . \longleftarrow \underbrace{\text { in computer science, }}_{\text {In means base-2 logarithm }}$
Pf. What causes the depth of element x to increase?
Increases by 1 when root of tree T_{1} containing x is linked to root of tree T_{2}.

- The size of the tree containing x at least doubles since $\left|T_{2}\right| \geq\left|T_{1}\right|$.
- Size of tree containing x can double at most $\lg n$ times. Why?

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n$.

algorithm	initialize	union	find	
quick-find	n	n	1	
quick-union	n	n	n	
weighted quick-union	n	$\log n$	$\log n$	log mean logarithm, for some constant base
number of array accesses (ignoring leading constant)				

Summary

Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	$m n$
quick-union	$m n$
weighted quick-union	$n+m \log n$
QU + path compression	$n+m \log n$
weighted QU + path compression	$n+m \log ^{*} n$

order of growth for \mathbf{m} union-find operations on a set of \boldsymbol{n} elements

Ex. [109 unions and finds with 10^{9} elements]

- Weighted quick-union reduces run time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

1.5 UNION-FIND

union-find-data type

Algorithms

Robert Sedgewick \| Kevin Wayne

- quick-find
- quick-unión
- improvements
- applications

Union-find applications

- Percolation. \longleftarrow first programming assignment
- Terrain analysis.
- Contiguous regions in images.
- Least common ancestors in trees.
- Games (Go, Hex, maze generation).
- Minimum spanning tree algorithms.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hindley-Milner polymorphic type inference.
- Compiling equivalence statements in Fortran.
- Connectedness of nodes in a computer network.

