
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/12/19 7:33 AM

1.3 STACKS AND QUEUES

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applicationshttps://algs4.cs.princeton.edu

see precept

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Stacks and queues: fundamental data types

Both are collections of objects.
Both support add, remove, iterate, test if empty.

Intent is clear when we add.
Difference between stack and queue: which item to remove.
 
 
 
 
 
 
 
 
 
Stack. Remove the item most recently added.
Queue. Remove the item least recently added.

pop

pushstack

"2

LIFO = “last in first out”

FIFO = “first in first out”

enqueue dequeue

queue

Created by Gan Khoon Lay
from the Noun Project

Client, implementation, API

Separate client and implementation via API.  

 
 
 
 
 
 
 
 
Benefits.

・Design: create modular, reusable libraries.

・Performance: substitute faster implementations.
 
Ex. Stack, queue, bag, priority queue, symbol table, union–find, ….

"3

 API: operations that characterize the behavior of a data type.

 Client: program that uses the API operations.

 Implementation: code that implements the API operations.

Client API Implementation

Layers in a computer system

"4

Program

Libraries

Programming language

Operating system

Hardware

Java libraries include stacks and queues
but in this course we’ll prefer our own
implementations

API

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Warmup API. Stack of strings data type.
 
 
 
 
 
 
 
 
 
 
 
 
Performance requirements. All operations must take constant time.

"6

Stack API

poppush

 public class StackOfStrings

StackOfStrings() create an empty stack

void push(String item) add a new string to stack

String pop()
remove and return the string  

most recently added

boolean isEmpty() is the stack empty?

int size() number of strings on the stack

Either data type can be implemented using either data structure

"7

Linked list Array

Stack ✓ ✓

Queue ✓ ✓

Client API Implementation

How to implement a stack with a singly linked list?
Recall: we only keep track of the head of the list.

 
 

 

C. Both A and B.  

D. Neither A nor B.

Stacks and queues: quiz 1

"8

of best the was it null

first

it was the best of null

first (least recently added)

(most recently added)B.

A.

Stack: linked-list implementation

・Maintain pointer first to first node in a singly linked list.

・Push new item before first.

・Pop item from first.

"9

of best the was it null

first (most recently added)

times

"10

Stack: linked-list implementation

public class LinkedStackOfStrings 
{ 
 private Node first = null; 
 
 private class Node 
 { 
 private String item; 
 private Node next; 
 }
  
 public boolean isEmpty() 
 { return first == null; }
 
 public void push(String item) 
 { 
 Node oldfirst = first; 
 first = new Node(); 
 first.item = item; 
 first.next = oldfirst; 
 }
 
 public String pop() 
 { 
 String item = first.item; 
 first = first.next; 
 return item; 
 } 
}

private inner class
(access modifiers for instance
variables of such a class don’t matter)

Stack pop: linked-list implementation

"11

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

inner class

private class Node

{

 String item;

 Node next;

}

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

to

be

orfirst

first = first.next;

to

be
or

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

Stack push: linked-list implementation

"12

inner class

private class Node

{

 String item;

 Node next;

}

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

item

Stack: linked-list implementation performance

Proposition. Every operation takes constant time in the worst case.
 
 
Proposition. A stack with n items uses ~ 40 n bytes.
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack  
(but not the memory for the strings themselves, which the client owns).

"13

8 bytes (reference to String)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes per stack Node

public class Node
{
 String item;
 Node next;
...
}

node object (inner class) 40 bytes

references

object
overhead

extra
overhead

item

next

8 bytes (inner class extra overhead)

inner class

private class Node

{

 String item;

 Node next;

}

How to implement a fixed-capacity stack with an array?  
 

 
 
 

C. Both A and B.  

D. Neither A nor B.

"14

Stacks and queues: quiz 2

times of best the was it null null null null

0 1 2 3 4 5 6 7 8 9

most recently added

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

B.

A.

Fixed-capacity stack: array implementation

・Use array s[] to store n items on stack.
・ push(): add new item at s[n].
・ pop(): remove item from s[n-1].
 
 
 
 
 
 
 
 
 
 
 
Defect. Stack overflows when n exceeds capacity. [stay tuned]

"15

s[]

n

capacity = 10

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

it wasit wasnull null

"16

Fixed-capacity stack: array implementation

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0; 

 public FixedCapacityStackOfStrings(int capacity) 
 { s = new String[capacity]; }  

 public boolean isEmpty() 
 { return n == 0; } 

 public void push(String item) 
 {

 s[n] = item;

 n++;

 } 

 public String pop() 
 {

 n--;

 return s[n];

 } 
}

a cheat
(stay tuned)

Stack considerations

Overflow and underflow.

・Underflow: throw exception if pop() from an empty stack.

・Overflow: use “resizing array” for array implementation. [stay tuned]
 
Null items. We allow null items to be added.
Duplicate items. We allow an item to be added more than once.
Loitering. Holding a reference to an object when it is no longer needed.

"17

no loitering

public String pop() 
{ 
 n--;

 String item = s[n]; 
 s[n] = null; 
 return item; 
}

loitering

public String pop() 
{

 n--;

 return s[n];

}

Common

source o
f

bugs

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?
 
First try.
・ push(): increase size of array s[] by 1.
・ pop(): decrease size of array s[] by 1.
 
Too expensive.

・Need to copy all items to a new array, for each operation.

・Array accesses to add first n items = n + (2 + 4 + … + 2(n – 1))
 
 
 
 
 
Challenge. Ensure that array resizing happens infrequently.

"19

1 array access
per push

2(k–1) array accesses to expand to size k
(ignoring cost to create new array)

infeasible for large n

~ n2.

"20

Q. How to grow array?
A. If array is full, create a new array of twice the size, and copy items.
 
 
 
 
 
 
 
 
 
 
 
 
Array accesses to add first n = 2 i items. n + (2 + 4 + 8 + … + n)

Stack: resizing-array implementation

“repeated doubling”

1 array access
per push

k array accesses to double to size k
(ignoring cost to create new array)

public ResizingArrayStackOfStrings() 
{ s = new String[1]; } 

public void push(String item) 
{ 
 if (n == s.length) resize(2 * s.length); 
 n++;

 s[n] = item; 
} 

private void resize(int capacity) 
{ 
 String[] copy = new String[capacity]; 
 for (int i = 0; i < n; i++) 
 copy[i] = s[i]; 
 s = copy; 
}

~ 3 n .

feasible for large n

Stack: resizing-array implementation

Q. How to shrink array?
 
First try.
・ push(): double size of array s[] when array is full.
・ pop(): halve size of array s[] when array is one-half full.
 
Too expensive in worst case.

・Consider push–pop–push–pop–… sequence when array is full.

・Each operation takes time proportional to n.

"21

push("to") to be or not to null null null

to be or notfull

to be or notpop()

to be or not be null null nullpush("be")

Stack: resizing-array implementation

Q. How to shrink array?

Efficient solution.
・ push(): double size of array s[] when array is full.
・ pop(): halve size of array s[] when array is one-quarter full.

Invariant. Array is between 25% and 100% full.

"22

 public String pop() 
 {

 n--;

 String item = s[n];

 s[n] = null; 
 if (n > 0 && n == s.length/4) resize(s.length/2);

 return item;

 }

Stack resizing-array implementation: performance

Amortized analysis. Starting from an empty data structure, average
running time per operation over a worst-case sequence of operations.
 
Proposition. Starting from an empty stack, any sequence of m push and
pop operations takes time proportional to m.

"23

typical worst amortized

construct 1 1 1

push 1 n 1

pop 1 n 1

size 1 1 1

doubling and
halving operations

order of growth of running time 
for resizing array stack with n items

Stack resizing-array implementation: memory usage

Proposition. A ResizingArrayStackOfStrings uses between ~ 8n and ~ 32n bytes
of memory for a stack with n items.

・~ 8n when full.

・~ 32n when one-quarter full.
 
 
 
 
 
 
 
 
 
 
Remark. This counts the memory for the stack  
(but not the memory for the strings themselves, which the client owns).

"24

public class ResizingArrayStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 ⋮

}

8 bytes × array length

Stack implementations: resizing array vs. linked list

Tradeoffs. Can implement a stack with either resizing array or linked list;  
client can use interchangeably. Which one is better? 

Linked-list implementation.

・Every operation takes constant time in the worst case.

・Uses extra time and space to deal with the links.  

Resizing-array implementation.

・Every operation takes constant amortized time.

・Less wasted space.

"25

to be or not null null null nulln = 4

to

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

orfirst

to

be

or

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

to

be
or

notfirst

null

null

null

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Queue API

Warmup API. Queue of strings data type.
 
 
 
 
 
 
 
 
 
 
 
Performance requirements. All operations take constant time.  

"27

 public class QueueOfStrings

QueueOfStrings() create an empty queue

void enqueue(String item) add a new string to queue

String dequeue() remove and return the string  
least recently added

boolean isEmpty() is the queue empty?

int size() number of strings on the queue

enqueue

dequeue

How to implement a queue with a singly linked list?  
 

 
 

C. Both A and B.  

D. Neither A nor B.
"28

Stacks and queues: quiz 3

most recently added

of best the wastimes it null

least recently added

was the best ofit times null

B.

A.

Queue: linked-list implementation

・Maintain one pointer first to first node in a singly linked list.

・Maintain another pointer last to last node.

・Dequeue from first.

・Enqueue after last.

"29

last (most recently added)first (least recently added)

was the best ofit times null

Queue dequeue: linked-list implementation

Remark. Identical code to linked-list stack pop().
"30

or

be

tofirst

first = first.next;

or

be
to

first

null

null

Removing the first node in a linked list

String item = first.item;

save item to return

delete first node

return item;

return saved item

last

lastinner class

private class Node

{

 String item;

 Node next;

}

Queue enqueue: linked-list implementation

"31

inner class

private class Node

{

 String item;

 Node next;

}

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

public class LinkedQueueOfStrings 
{ 
 private Node first, last; 

 private class Node 
 { /* same as in LinkedStackOfStrings */ }

 public boolean isEmpty() 
 { return first == null; }

 public void enqueue(String item) 
 { 
 Node oldlast = last;

 last = new Node(); 
 last.item = item;

 last.next = null; 
 if (isEmpty()) first = last;

 else oldlast.next = last;

 }

 public String dequeue() 
 { 
 String item = first.item; 
 first = first.next;

 if (isEmpty()) last = null; 
 return item; 
 } 
}

"32

 Queue: linked-list implementation

special cases for
empty queue

How to implement a fixed-capacity queue with an array?  

A.  

 

B.  

 

 

 

C. Both A and B.  

D. Neither A nor B.
"33

Stacks and queues: quiz 4

times of best the was it null null null null

0 1 2 3 4 5 6 7 8 9

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently added

most recently added

Queue: resizing-array implementation

・Use array q[] to store items in queue.
・ enqueue(): add new item at q[tail].
・ dequeue(): remove item from q[head].

・Update head and tail modulo the capacity.
 
 
 
 
 
 
 
 
 
 
 
Q. How to resize?

"34

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

least recently
added

most recently
added

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfApples, StackOfVans, ….
 
Solution in Java: generics.

 Stack<Apple> stack = new Stack<Apple>();

 Apple apple = new Apple();

 stack.push(apple);

 Van van = new Van();

 stack.push(van);

 ...

Parameterized stack

"36

type parameter
(use syntax both to specify type and to call constructor)

compile-time error

public class LinkedStackOfStrings
{ 
 private Node first = null;

 private class Node
 { 
 String item; 
 Node next; 
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(String item)
 { 
 Node oldfirst = first; 
 first = new Node(); 
 first.item = item; 
 first.next = oldfirst; 
 }

 public String pop()
 { 
 String item = first.item; 
 first = first.next; 
 return item; 
 } 
}

"37

Generic stack: linked-list implementation

stack of strings (linked list)

public class Stack<Item>
{ 
 private Node first = null;

 private class Node
 { 
 Item item; 
 Node next; 
 }

 public boolean isEmpty()
 { return first == null; }

 public void push(Item item)
 { 
 Node oldfirst = first; 
 first = new Node(); 
 first.item = item; 
 first.next = oldfirst; 
 }

 public Item pop()
 { 
 Item item = first.item; 
 first = first.next; 
 return item; 
 } 
}

generic type name

generic stack (linked list)

generic stack (fixed-length array) ?

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 public ..StackOfStrings(int capacity) 
 { s = new String[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(String item) 
 { s[n++] = item; }

 public String pop() 
 { return s[--n]; }

}

public class FixedCapacityStack<Item> 
{ 
 private Item[] s; 
 private int n = 0;

 public FixedCapacityStack(int capacity) 
 { s = new Item[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(Item item) 
 { s[n++] = item; }

 public Item pop() 
 { return s[--n]; }

}

"38

Generic stack: array implementation

@#$*! generic array creation not allowed in Java

stack of strings (fixed-length array)

"39

Generic stack: array implementation

public class FixedCapacityStack<Item> 
{ 
 private Item[] s; 
 private int n = 0;

 public FixedCapacityStack(int capacity)

 { s = (Item[]) new Object[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(Item item) 
 { s[n++] = item; }

 public Item pop() 
 { return s[--n]; }

}

the ugly cast

public class FixedCapacityStackOfStrings 
{ 
 private String[] s; 
 private int n = 0;

 public ..StackOfStrings(int capacity) 
 { s = new String[capacity]; }

 public boolean isEmpty() 
 { return n == 0; }

 public void push(String item) 
 { s[n++] = item; }

 public String pop() 
 { return s[--n]; }

}

stack of strings (fixed-length array) generic stack (fixed-length array)

Which of the following is the correct way to declare and initialize 
an empty stack of integers?

A. Stack stack = new Stack<int>(); 

B. Stack<int> stack = new Stack(); 

C. Stack<int> stack = new Stack<int>(); 

D. None of the above.

"40

Stacks and queues: quiz 5

"41

Generic data types: autoboxing and unboxing

Q. What to do about primitive types? 

Wrapper type.

・Each primitive type has a wrapper object type.

・Ex: Integer is wrapper type for int.  
 

Autoboxing. Automatic cast from primitive type to wrapper type.
Unboxing. Automatic cast from wrapper type to primitive type.  
 
 
 
 
 

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> stack = new Stack<Integer>();

stack.push(17); // stack.push(Integer.valueOf(17));

int a = stack.pop(); // int a = stack.pop().intValue();

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

see precept

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Design challenge. Support iteration over stack items by client,  
without revealing the internal representation of the stack.
 
 
 
 
 
 
 
 
 
 
 
 
Java solution. Use a foreach loop.

Iteration

"43

first current

of best the wastimes it null

s[]

n

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i
resizing-array representation

linked-list representation

Java provides elegant syntax for iteration over collections.
 
 
 
 
 
 
 
 
 
 
To make user-defined collection support foreach loop:

・Data type must have a method named iterator().

・The iterator() method returns an object that has two core method.
– the hasNext() methods returns false when there are no more items
– the next() method returns the next item in the collection

Foreach loop

"44

equivalent code (longhand)

Stack<String> stack; 
... 

Iterator<String> i = stack.iterator();

while (i.hasNext())

{

 String s = i.next();

 ...

}

“foreach” loop (shorthand)

Stack<String> stack;

...

for (String s : stack)

 ...

To support foreach loops, Java provides two interfaces.
・ Iterator interface: next() and hasNext() methods.
・ Iterable interface: iterator() method that returns an Iterator.

・Both should be used with generics.
 
 
 
 
 
 
 
 
 
Type safety.

・Implementation must use these interfaces to support foreach loop.

・Client program won’t compile unless implementation do.

public interface Iterator
{
 boolean hasNext();
 Item next();
 void remove();
}

java.util.Iterator interface

public interface Iterable
{
 Iterator iterator();
}

java.lang.Iterable interface

public interface Iterable<Item>

{

 Iterator<Item> iterator();

}

public interface Iterator<Item>

{

 boolean hasNext();

 Item next();

 void remove();

}

Iterators

"45

optional; use  
at your own risk

Stack iterator: linked-list implementation

"46

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>
{
 ...

 public Iterator<Item> iterator() { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext() { return current != null; }
 public void remove() { /* not supported */ }
 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }

}

throw UnsupportedOperationException

throw NoSuchElementException
if no more items in iteration

first current

of best the wastimes it null

Stack iterator: array implementation

"47

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>

{

 ...

 public Iterator<Item> iterator()

 { return new ReverseArrayIterator(); }

 private class ReverseArrayIterator implements Iterator<Item>

 {

 private int i = n;

 public boolean hasNext() { return i > 0; }

 public void remove() { /* not supported */ }

 public Item next() { return s[--i]; }

 }

}

s[]

n

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

i

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ stacks
‣ resizing arrays
‣ queues
‣ generics
‣ iterators
‣ applications

1.3 STACKS AND QUEUES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Stack applications

・Java virtual machine.

・Parsing in a compiler.

・Undo in a word processor.

・Back button in a Web browser.

・PostScript language for printers.

・Implementing function calls in a compiler.

・...

"49

Queue applications

Familiar applications.

・Spotify playlist.

・Data buffers (iPod, TiVo, sound card, streaming video, …).

・Asynchronous data transfer (file IO, pipes, sockets, …).

・Dispensing requests on a shared resource (printer, processor, …).

Simulations of the real world.

・Traffic analysis.

・Waiting times of customers at call center.

・Determining number of cashiers to have at a supermarket.

"50

Java collections library

List interface. java.util.List is API for a sequence of items.
 
 
 
 
 
 
 
 
 
 
 
 
 
Implementations. java.util.ArrayList uses a resizing array;  
java.util.LinkedList uses a doubly linked list.

"51

 public interface List<Item> extends Iterable<Item>

List() create an empty list

boolean isEmpty() is the list empty?

int size() number of items

void add(Item item) add item to the end

Iterator<Item> iterator() iterator over all items in the list

Item get(int index) return item at given index

Item remove(int index) return and delete item at given index

boolean contains(Item item) does the list contain the given item?

 ⋮

Caveat: not all operations are efficient!

Java collections library

java.util.Stack.

・Supports push(), pop(), and iteration.

・Inherits from java.util.Vector, which implements java.util.List interface.

"52

The iterator method on java.util.Stack iterates through a Stack from the bottom up. One

would think that it should iterate as if  

it were popping off the top of the Stack.

Java 1.3 bug report (June 27, 2001)

It was an incorrect design decision to have Stack extend Vector ("is-a" rather than "has-a").

We sympathize with the submitter 

but cannot fix this because of compatibility.

status (closed, will not fix)

Java collections library

java.util.Stack.

・Supports push(), pop(), and iteration.

・Inherits from java.util.Vector, which implements java.util.List interface.
 
 
 
 
 
 
 
 
java.util.Queue. An interface, not an implementation of a queue.
 
Best practices. Use our Stack and Queue for stacks and queues;  
use java.util.ArrayList or java.util.LinkedList when appropriate.

"53

"54

Unchecked cast

 
 
 
 
 
 
 
 
 
 
Q. Why does Java require a cast (or reflection)?
Short answer. Backward compatibility.
Long answer. Need to learn about type erasure and covariant arrays.

% javac -Xlint:unchecked FixedCapacityStack.java
FixedCapacityStack.java:26: warning: [unchecked] unchecked cast  
 s = (Item[]) new Object[capacity];
 ^
 required: Item[]
 found: Object[]
 where Item is a type-variable:
 Item extends Object declared in class FixedCapacityStack
1 warning

