COS 226

ALGORITHMS and DATA STRUCTURES

ARVIND NARAYANAN · MAIA GINSBURG · IBRAHIM ALBLUWI

INTRO TO COS 226

motivation

course details and policies

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

COS 226 course overview

What is COS 226?

- Intermediate-level survey course.
- Programming and problem solving, with applications.
- Algorithm: sequence of instructions for solving a problem.
- · Data structure: method to organize data in a computer.

topic	data structures and algorithms
data types	stack, queue, union-find, priority queue
sorting	quicksort, mergesort, heapsort, radix sorts
searching	BST, red-black BST, hash table
graphs	BFS, DFS, Prim, Kruskal, Dijkstra
strings	KMP, regular expressions, tries, data compression
advanced	k-d tree, suffix array, maxflow

Their impact is broad and far-reaching.

Feb. 16. 2015 8:20 n - 57

To solve problems that could not otherwise be addressed.

http://www.youtube.com/watch?v=ua7YIN4eL_w

They may unlock the secrets of life and of the universe.

- "Computer models mirroring real life have become crucial for most advances made in chemistry today.... Today the computer is just as important a tool for chemists as the test tube."
 - Royal Swedish Academy of Sciences(Nobel Prize in Chemistry 2013)

Old roots, new opportunities.

- Study of algorithms dates at least to Euclid.
- · Named after Muḥammad ibn Mūsā al-Khwārizmī.
- Formalized by Church and Turing in 1930s.
- Some important algorithms were discovered by undergrads in a course like this!

To become a proficient programmer.

"I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships."

— Linus Torvalds (architect of Linux and git)

For intellectual stimulation.

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious.

But once unlocked, they cast a brilliant new light on some aspect of computing." — Francis Sullivan

For fun and profit.

Morgan Stanley

Algorithms can be misused

- Their impact is broad and far-reaching.
- To solve problems that could not otherwise be addressed.
- They may unlock the secrets of life and of the universe.
- Old roots, new opportunities.
- To become a proficient programmer.
- For intellectual stimulation.
- For fun and profit.

INTRO TO COS 226

motivation

course details and policies

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

The New York Times

Laptops Are Great. But Not During a Lecture or a Meeting.

Laptop use — even for note taking — negatively impacts learning

Lots of peer-reviewed research on this topic

The laptop and the lecture: The effects of multitasking in learning environments by Helene Hembrooke and Geri Gay, *Journal of Computing in Higher Education*, 2003

<u>In-class laptop use and its effects on student learning</u> by Carrie B. Fried, *Computers & Education*, 2007

<u>Daydreaming and its correlates in an educational environment</u> by Sophie Lindquist and John McLean, *Learning and Individual Differences*, 2011

Examining the impact of off-task multi-tasking with technology on real-time classroom learning by Eileen Wood, Lucia Zivcakova, Petrice Gentile, Karin Archer, Domenica De Pasquale, Amanda Nosko, *Computers & Education*, 2011

The impact of laptop-free zones on student performance and attitudes in large lectures by Nancy Aguilar-Roca, Adrienne Williams, and Diane O'Dowd, *Computers & Education*, 2012

Laptop multitasking hinders classroom learning for both users and nearby peers by Faria Sana, Tina Weston, Nicholas J. Cepeda, *Computers & Education*, 2013

The pen is mightier than the keyboard: Advantages of longhand over laptop note taking by Pam A. Mueller and Daniel M. Oppenheimer, *Psychological Science*, 2014

The impact of computer usage on academic performance: Evidence from a randomized trial at the United States Military Academy by Susan Payne Carter, Kyle Greenberg, Michael S. Walker, *Economics of Education Review*, 2017

Logged in and zoned out: How laptop internet use relates to classroom learning by Susan Ravizza, Mitchell Uitvlugt, Kimberly Fenn, *Psychological Science*, 2017

Laptop use harms other students

Computers & Education

Volume 62, March 2013, Pages 24-31

Laptop multitasking hinders classroom learning for both users and nearby peers

Faria Sana ^a ⊠, Tina Weston ^{b, c} ⊠, Nicholas J. Cepeda ^{b, c} △ ⊠

⊞ Show more

https://doi.org/10.1016/j.compedu.2012.10.003

Under a Creative Commons license

Get rights and content

open access

Policy: no laptops/phones/tablets in class

Student response system (required).

- Any hardware version of iClicker.
 (use iClicker Reef at your own risk, WiFi issues?)
- Register your iClicker in Blackboard. Bb
- Available at Labyrinth Books (\$30).

 save serial number to maintain resale value

We'll start using them on Thursday.

Course staff

Arvind Narayanan ➤ Faculty
Instructor

Maia Ginsburg ➤
Faculty
Lead Preceptor

Ibrahim Albluwi ► Faculty
Lead Preceptor

Ross Teixeira ➤
Graduate Student
Preceptor

Qasim Nadeem

Graduate Student

Preceptor

Lisa Jian ➤
Graduate Student
Preceptor

Matthew Weaver ➤
Graduate Student
Preceptor

Mohamed El-Dirany

Graduate Student

Preceptor

Alberto Mizrahi Benmaman

Graduate Student

Preceptor

Precepts: Discussion, problem solving, assignment prep

Programming assignments

Implement an efficient algorithm or data structure.

Solve an interesting application using a "textbook" algorithm.

Programming assignments

IntelliJ-based programming environment (highly recommended).

- Continuous inspection; integrated Checkstyle and Findbugs.
- Autoformat, autoimport, and autocomplete.
- Embedded bash terminal.

Quizzes

- 2–3 short questions per lecture.
- 3 attempts per question.
- Use pencil and paper.

Midterm and final

Written exams.

- · Questions drawn from quizzes and lectures.
- Emphasizes non-programming material.

COS 226	Algorithms and Data Structures	Fall 2017
	Midterm	

This exam has 10 questions (including question 0) worth a total of 55 points. You have 80 minutes. This exam is preprocessed by a computer, so please write darkly and write your answers inside the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one page cheatsheet (8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Grading

Programming assignments. 45%

- Due at 6pm on Mondays via TigerFile.
- Collaboration/lateness policies: see web.

Quizzes. 10%

- Due at 6pm on Fridays via Quizzera.
- Collaboration/lateness policies: see web.

Exams. 15% + 30%

- Midterm (in class on Thursday, March 14).
- Final (to be scheduled by Registrar).

Resources (textbook)

Readings (required). Algorithms 4th edition by R. Sedgewick and K. Wayne, Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

1st edition (1982)

2nd edition (1988)

3rd edition (1997)

4th edition (2011)

Available in various formats.

- Online: Amazon (\$85 hardcover, \$60 Kindle, \$40 rent), ...
- Brick-and-mortar: Labyrinth Books (\$60 hardcover).
- On reserve: Engineering library.

The creator gods of COS 226

Robert Sedgewick

Kevin Wayne

Resources (videos)

Lecture videos (optional).

- Missed lecture.
- Review for exams.

More info

COS 226 Syllabus (Spring 2019)

www.princeton.edu/~cos226/ ▼

Syllabus. Description. This course surveys the most important algorithms and data structures in use on computers today. Particular emphasis is given to ...

Resources (web)

Course content.

- Course info.
- Lecture slides.
- Programming assignments.
- Quizzes.
- Exam archive.

Booksite.

- Brief summary of content.
- Download code from book.
- APIs and Javadoc.

ALGORITHMS, 4TH EDITION

essential information that every serious programmer needs to know about algorithms and data structures

Textbook. The textbook *Algorithms, 4th Edition* by Robert Sedgewick and Kevin Wayne [Amazon · Addison-Wesley] surveys the most important algorithms and data structures in use today. The textbook is organized into six chapters:

- Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our programming model.
- Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap implementation of a priority queue.
- Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.

https://algs4.cs.princeton.edu

Resources (people)

Piazza discussion forum.

- Low latency, low bandwidth.
- See Piazza for guidelines.

Office hours.

- High bandwidth, high latency.
- · See web for schedule.
- For assignment questions,
 go to preceptor office hours

http://www.princeton.edu/~cos226

Computing laboratory.

- Undergrad lab TAs.
- For help with debugging.
- See web for schedule.

http://labta.cs.princeton.edu