COS 226 Algorithms and Data Structures Spring 2019

Midterm

This exam has 7 questions worth a total of 58 points. You have 80 minutes. The exam is
preprocessed by a computer (yay algorithms!), so please write inside the designated spaces.

The exam is closed book, except that you are allowed to use a one page sheet of notes
(8.5-by-11 paper, one side, in your own handwriting). No electronic devices are permitted.

Discussing the contents of this exam before solutions have been posted is a violation of the
Honor Code. Do not remove this exam from this room.

Name:

NetID:

Exam Room:

Precept:
Po1 Po1A Po2 Po3 Po4 Po4A Pos PosA PosB Po6

O O O O O O O O O O

Write this in the box below:
“I pledge my honor that I will not violate the Honor Code during this exam.”

Signature

1. Memory [6 points]
Use the 64-bit memory cost model from lecture and the textbook to answer the questions below.

A. How much memory does a Queue consume as a function of the number of Nodes n? Exclude
the memory for the items themselves. Use tilde notation to simplify your answer.

public class Queue<Item>

{
private Node first, last;
private class Node
{
Item item;
Node next;
}
}
Answer: ~ bytes

B. How much memory does a BookListing use? Assume that ISBNs are always 13 characters
long.

public class BookListing

{

private char[] isbn;
private double price;

Answer: bytes

C. How much memory does a Queue of BookListings use as a function of the number of book
listings n? Include all referenced memory. Use tilde notation to simplify your answer.

Answer: ~ bytes

2. Analysis of algorithms [6 points]

Calculate the number of invocations of op () in each of the following code snippets as a function
of n. Use tilde notation to simplify your answer.

public static void alpha (int n) {
for (int i = 9; 1 < n/2 + 10; i++)
op();

Answer: ~

public static void bravo (int n) {
for (int i = 9; 1 < n*n; i++)
for (int j = 0; j < i; j++)
op();

Answer: ~

public static void charlie (int n) {
if (n <= 1) return;
charlie(n/3);
for (int i = 0; i < n; i++)
op();
charlie(n/3);
charlie(n/3);

Answer: ~

Extra credit [1 point].
For delta, assume that n is a power of 2.
(Hint: this one is tricky; you may want to attempt it at the end.)

public static void delta (int n) {
for (int i =1; i<n; i=1 * 2)
delta(i);
op();

Answer: ~

3. Union find [6 points]

Consider the following sequence of union commands on a set of 10 elements:

1—7 4—0 7—2 6—2 9—5 2—7 9—O0

Show the resulting array for each of the following union-find implementations.

Recall that the role of p and q in union(p, q) can be swapped without affecting the correctness
of the algorithm. For each implementation below, feel free to use either order, as long as you're
consistent across union invocations (the answers resulting from either order will receive full

credit).

A. Quick Find

id[]

B. Quick Union

parent[]

C. Weighted Quick Union

parent[]

4. Sorting [10 points]

For each of the following sort algorithms, what is the order of growth (as a function of n) of the
number of compares needed to sort an array of n distinct items that’s already sorted in reverse
order?

A. Insertion sort D. Quicksort (with shuffling, average case)
0() 6()

B. Selection sort E. Heapsort
0() 6()

C. Mergesort, as implemented in Java for sorting objects

6()

The code below repeatedly invokes the same sort algorithm n times on an array, where n is the
length of the array:

public static void repeated sort(Comparable[] a){
for (int i = 9; i < a.length; i++)
Sorter.sort(a);

Assuming that the initial array a is sorted in reverse order, what is the order of growth (as a
function of n) of the number of compares made by repeated_sort when Sorter.sort is
replaced by each of the following algorithms?

F. Insertion sort I. Quicksort (with shuffling, average case)
¢) 0()

G. Selection sort J. Heapsort
6() 6()

H. Mergesort, as implemented in Java for sorting objects

6()

5. Search trees [9 points]

A. Label each node in the following binary tree with keys from the set {R, E, D, B, L, A, C, K} so
that it is a valid Binary Search Tree with respect to alphabetical ordering of keys. (Hint: use the
scratch space on the facing page, and only write down the answer once you have it.)

B. Now design an algorithm to do what you did in part A. Specifically, given a binary tree with n
nodes, where all the keys are null, and an array of n distinct keys, replace each null key in the
binary tree with one of the keys in the array so that it forms a valid BST.

Give a concise English description of your algorithm. It will be graded for correctness, efficiency,
and clarity. For full credit, the number of compares made by your algorithm must be
proportional to n log n in the worst case.

C. In what order might the eight keys have been inserted so that it would have resulted in the
BST above?

D. Is your answer to part C unique, or is there a different order that would have resulted in the
same BST?

Unique Not unique

E. Now label each edge in the binary tree (in part A above) with r or b, denoting RED or BLACK,
so that the tree is a valid Left-Leaning Red-Black Tree.

Scratch space

6. Debugging [6 points]

Consider the following implementation of a linear probing hash table. Code is shown only for
the put method, which has a bug. Assume that all other methods are correctly implemented.

o1
02
Q03
04
05
06
a7
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public class LinearProbingHashST<Key, Value>

{

private int n; // number of key-value pairs in the symbol table
private int m; // size of table

private Key[] keys;

private Value[] vals;

public LinearProbingHashST(int capacity) { ... }
private int hash(Key key) { ... }

// resizes the keys and vals arrays to the given size,
// rehashing all the keys
private void resize(int capacity) {

public void put(Key key, Value val) {
if (n / m >= 0.5)
resize (2 * m);
int i;
for (i = hash(key); keys[i] != null; i = (i+l1l) % m)
if (keys[i].equals(key))
break;
key;
val;

keys[i]
vals[i]
N++;

public Value get(Key key) { ... }

public void delete(Key key) { ... }

The intent behind the code is to resize the symbol table when it is half full, but it fails to do so.
Describe how to fix this bug: write the line number of the code that you would change, and how
you would change the code.

Line number Fixed code

What are the effects of this bug? Check all that apply.

Compilation error.

Incorrect values returned by get.

Infinite loop in put when table gets full.

Hash table consumes too much memory compared to correct implementation.

get makes too many equals calls compared to correct implementation.

put makes too many equals calls compared to correct implementation.

7. Data structure and algorithm design [15 points]

A Point is an object consisting of an x- and a y-coordinate. Your goal is to maintain a collection
of Points that supports the following operations:

Add a Point to the collection

Return the Point with the lowest x-coordinate
Return the Point with the lowest y-coordinate
Delete the Point with the lowest x-coordinate
Delete the Point with the lowest y-coordinate

If there are multiple Points with the same x- or y-coordinate, you may choose among them
arbitrarily.

Your answers below will be graded for correctness, efficiency, and clarity. For full credit:
Any sequence of n invocations of the supported operations (in any order), starting from
an empty collection, must complete in time proportional to n log n in the worst case.
Returning the Point with the lowest x- or y-coordinate must take constant time.

You may make any standard technical assumptions that we have seen in this course.

A. Describe the data structures you would use. Specifically, for any new data structures you
need, write the class declaration. For any data structures from lectures/textbook that you would
use, succinctly describe how you would use them and what modifications are needed (if any).

B. Give a concise English description of your algorithm for adding a Point to the collection. Feel
free to use some pseudocode if you think it will improve clarity.

C. Give a concise English description of your algorithm for returning the Point with the lowest x-
or y-coordinate. Feel free to use some pseudocode if you think it will improve clarity.

10

D. Give a concise English description of your algorithm for deleting the Point with the lowest x-
or y-coordinate. Feel free to use some pseudocode if you think it will improve clarity.

E. What is the worst-case order-of-growth running time of your design for a sequence of n
invocations of the supported operations (in any order), starting from an empty collection?

6()

F. Explain your answer to part E.

11

12

