
Princeton University
COS 217: Introduction to Programming Systems

C Symbolic Constants

Approach 1: Macros

Example

int main(void)
{
 #define START_STATE 0
 #define POSSIBLE_COMMENT_STATE 1
 #define COMMENT_STATE 2
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
}

Terminology
START_STATE, POSSIBLE_COMMENT_STATE, and COMMENT_STATE are macros.

Strengths
Preprocessor does substitutions only for tokens.

int iSTART_STATE; /* No substitution. */

Preprocessor does not do substitutions within string literals.
printf("What is the START_STATE?\n"); /* No substitution. */

Simple textual substitution; works for any type of data.
#define PI 3.14159

Weaknesses
Preprocessor does not respect context.

int START_STATE;
After preprocessing, becomes:
int 0; /* Compiletime error. */

Convention: Use all uppercase letters to reduce probability of unintended replacement.

Preprocessor does not respect scope.

Preprocessor replaces START_STATE with 0 from point of #define to end of file, not to
end of function. Could affect subsequent functions unintentionally.

Convention: Place #defines at beginning of file, not within function definitions

Page 1 of 4

Approach 2: Constant Variables

Example

int main(void)
{
 const int START_STATE = 0;
 const int POSSIBLE_COMMENT_STATE = 1;
 const int COMMENT_STATE = 2;
 ...
 ...
 int iState;
 ...
 iState = START_STATE;
 ...
 iState = COMMENT_STATE;
 ...
}

Strengths

Works for any type of data.

const double PI = 3.14159;
const long MAX = 1000000000000000000L;

Handled by compiler; compiler respects context and scope.

Weaknesses

Does not work for array lengths (unlike C99, C11, and C++).

const int ARRAY_LENGTH = 10;
...
int aiNumbers[ARRAY_LENGTH]; /* Compile-time warning */
...

Page 2 of 4

Approach 3: Enumerations

Example

int main(void)
{
 enum State {START_STATE, POSSIBLE_COMMENT_STATE, COMMENT_STATE, ...};
 enum State eState;
 ...
 eState = START_STATE;
 ...
 eState = COMMENT_STATE;
 ...
}

Terminology

enum State is an enumeration type.
START_STATE, POSSIBLE_COMMENT_STATE, … are enumeration constants.
eState is an enumeration; it is of type enum State.

Notes

Can use an expression of type int where an enumeration constant is expected.
eState = 0; /* Can assign an int to an enumeration. */

Can use an enumeration constant where an expression of type int is expected.
i = START_STATE; /* Can assign an enumeration constant to an int variable.
 START_STATE is an alias for 0, POSSIBLE_COMMENT_STATE
 is an alias for 1, etc. */

Strengths

Can explicitly specify values for enumeration constants.
enum State {START_STATE=5, POSSIBLE_COMMENT_STATE=3, COMMENT_STATE=4, ...};

Can define an anonymous enumeration type, thus effectively giving symbolic names to int literals.
enum {MAX_VALUE = 9999};
...
int i;
...
i = MAX_VALUE;
...

Works when specifying array lengths.
enum {ARRAY_LENGTH = 10};
...
int aiNumbers[ARRAY_LENGTH];
...

Weakness

Works only for int literals.
enum {PI = 3.14159}; /* Compile-time error */
enum {MAX = 1000000000000000000L}; /* Compile-time warning */

Page 3 of 4

Style Rules

To give a symbolic name
to a literal of type ...

Use …

int An enumeration

char
unsigned char
short
unsigned short
unsigned int
long
unsigned long
float
double
long double
string

A constant
variable

Don't use macros to give symbolic names to literals.

Copyright © 2019 by Robert M. Dondero, Jr.

Page 4 of 4

