"Princeton University

Computer Science 217: Introduction to Programming Systems

Signals

-

Goals of this Lecture

Help you learn about:

Sending signals

Handling signals

... and thereby ...

How the OS exposes the occurrence of
some exceptions to application processes
How application processes can control their
behavior in response to those exceptions

-

Agenda

Unix Process Control
Signals

Sending Signals
Handling Signals

Alarms

/

Unix Process Control

Non-Existing
} command Process | command &
T Ctrl-c t 1 kill =2 pid
Running — fg Running
Foreground « Background
Process Process
1 kill =2 pid
| Ctrl-z 1 kill -20 pid
T fg Stopped T bg
Background
Process

-

Process Control Implementation

~N

SV NUTIHE

Exactly what happens when you:

Type Ctrl-c?
o Keystroke generates interrupt
* OS handles interrupt
e OS sends a 2/SIGINT signal

Type Citrl-z?
o Keystroke generates interrupt
* OS handles interrupt
 OS sends a 20/SIGTSTP signal

Recall Exceptions and
Processes lecture

/

~N
Process Control Implementation (cont.)

Exactly what happens when you:

Issue a kill —si1g pid command?
e ki1l command executes trap

* OS handles trap
« OS sends asig signal to the process whose id is pid

Issue a fg or bg command?
= fg or bg command executes trap

* OS handles trap

 OS sends a 18/SIGCONT signal (and does other things too!)

Recall Exceptions and
Processes lecture

>/

-

Agenda

Unix Process Control
Signals

Sending Signals
Handling Signals

Alarms

/

Signals

Signal: A notification of an exception

Typical signal sequence:
e Process P is executing
e EXxception occurs (interrupt, trap, fault, or abort)
e OS gains control of CPU
« OS wishes to inform process P that something significant happened
 OS sends a signal to process P
e OS sets a bitin pending bit vector of process P
 Indicates that OS is sending a signal of type X to process P
« A signal of type X is pending for process P

/

Signals

Typical signal sequence (cont.):

Sometime later...
OS is ready to give CPU back to process P
OS checks pending for process P, sees that signal of type X is
pending
OS forces process P to receive signal of type X
« OS clears bit in process P’ s pending
Process P executes action for signal of type X
 Normally process P executes default action for that signal

 If signal handler was installed for signal of type X, then process
P executes signal handler

« Action might terminate process P; otherwise...
Process P resumes where it left off

/

Examples of Signals

User types Citrl-c
 Interrupt occurs
OS gains control of CPU
OS sends 2/SIGINT signal to process
Process receives 2/SIGINT signal
Default action for 2/SIGINT signal is “terminate”

Process makes illegal memory reference
e Segmentation fault occurs
OS gains control of CPU
OS sends 11/SIGSEGYV signal to process
Process receives 11/SIGSEGV signal
Default action for 11/SIGSEGYV signal is “terminate”

2

-

Agenda

Unix Process Control
Signals

Sending Signals
Handling Signals

Alarms

2

-

Sending Signals via Keystrokes

User can send three signals from keyboard:

o Ctrl-c = 2/SIGINT signal

 Default action is “terminate”
o Ctrl-z = 20/SIGTSTP signal

 Default action is “stop until next 18/SIGCONT”
o Ctrl-\ = 3/SIGQUIT signal

 Default action is “terminate”

5

/

Sending Signals via Commands

User can send any signal by executing command:

kill command
« kill -sig pid
e Send a signal of type sig to process pid
* No —si1g option specified = sends 15/SIGTERM signal
 Default action for 15/SIGTERM is “terminate”
* You must own process pid (or have admin privileges)
« Commentary: Better command name would be sendsig

Examples
- kill —2 1234
«kill -SIGINT 1234

e Same as pressing Ctrl-c if process 1234 is running in foreground

Y

4)

=

Sending Signals via Function Calls #;

SV NUTIHE

Program can send any signal by calling function:

raise() function
e INnt raise(int 1Si1Q);
« Commands OS to send a signal of type 1S1g to calling process
e Returns 0 to indicate success, non-0 to indicate failure

Example
e IRet = raise(SIGINT);
 Send a 2/SIGINT signal to calling process

5

/

Sending Signals via Function Calls

kill() function
e int kKill(pid_t 1Pi1d, Int 1S1Q);

process

Example
e IRet

Sends a 1S1g signal to the process 1Pi1d
Equivalent to raise(i1Si1g) when 1Pi1d is the id of current

You must own process pid (or have admin privileges)
Commentary: Better function name would be sendsig()

Kil1(1234, SIGINT);

« Send a 2/SIGINT signal to process 1234

)

-

Agenda

Unix Process Control
Signals

Sending Signals
Handling Signals

Alarms

7

-

Handling Signals

Each signal type has a default action
» For most signal types, default action is “terminate”

A program can install a signal handler
* To change action of (almost) any signal type

2

/

Installing a Signal Handler

signal () function

e sighandler_t signal(int i1Sig,
sighandler_t pfHandler);

 |nstall function pfHandler as the handler for signals of type 1Sig
e pfHandler is a function pointer:

typedef void (*sighandler _t)(int);
* Return the old handler on success, SIG_ERR on error

o After call, (*pfHandler) is invoked whenever process receives a

signal of type 1Si1g

9

-

SIG DFL

Predefined value: SIG_DFL

Use as argument to signal () to restore default action

Subsequently, process will handle 2/SIGINT signals using
default action for 2/SIGINT signals (“terminate™)

)

-

SIG IGN

Predefined value: SIG _IGN

Use as argument to signal () to ignore signals

Subsequently, process will ignore 2/SIGINT signals

2

-

Uncatchable Signals

Special cases: A program cannot install a signal handler for

signals of type:

e 9/SIGKILL
e Default action is “terminate”

e 19/SIGSTOP
« Default action is “stop until next 18/SIGCONT”

2

-

Signal Handling Example 1

Program testsignal.c:

Error handling code omitted
in this and all subsequent
programs in this lecture

2

-

Signal Handling Example 2

Program testsignalall.c:

Will fail:
signal (9, myHandler)
signal (19, myHandler)

*

-

Signal Handling Example 3

Program generates lots of temporary data
« Stores the data in a temporary file
« Must delete the file before exiting

%)

/

Example 3 Problem

What if user types Ctrl-c?
 OS sends a 2/SIGINT signal to the process
 Default action for 2/SIGINT is “terminate”

Problem: The temporary file is not deleted
* Process terminates before remove(""temp.txt"') is executed

Challenge: Ctrl-c could happen at any time
 Which line of code will be interrupted???

Solution: Install a signal handler

« Define a “clean up” function to delete the file
« Install the function as a signal handler for 2/SIGINT

%

Example 3 Solution

-

Agenda

Unix Process Control
Signals

Sending Signals
Handling Signals

Alarms

)

-
Alarms

alarm() function
e unsigned 1nt alarm(unsigned iInt uiSec);
Send 14/SIGALRM signal after utSec seconds
Cancel pending alarm if uitSec is 0
Use wall-clock time
* Time spent executing other processes counts
* Time spent waiting for user input counts
Return value is irrelevant for our purposes

Used to implement time-outs

-
Alarm Example 1

Program testalarm.c:

"

-
Alarm Example 2

Program testalarmtimeout.c:

2

Summary

List of the predefined signals:

$ kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 79 SIGBUS 8) SIGFPE

9y SIGKILL 10) SIGUSR1 11y SIGSEGV 129 SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22 SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1

36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 399 SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9
44y SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13
529 SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9
56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX

See Bryant & O’ Hallaron book for default actions, triggering exceptions

Application program can define signals with unused values
33

-

Summary

Signals
« Sending signals
 From the keyboard
« By calling function: raise() or ki1 ()
* By executing command: kil

« Catching signals
e signal () installs a signal handler

* Most signals are catchable

Alarms
o Call alarm() to send 14/SIGALRM signals in wall-clock time

e Alarms can be used to implement time-outs

*

-

Summary (cont.)

For more information:

Bryant & O’ Hallaron, Computer Systems:
A Programmer s Perspective, Chapter 8

%)

/

Wrapping Up the Course

Assignment 7
 Due on Dean’s Date at 5 PM
* No extensions past 11:59 PM without permission of the Dean

Office hours and exam prep sessions
* Will be announced on Piazza

Final exam

Monday, 5/20, 7:30 — 10:30 PM, McCosh 10

Covers everything, emphasizing material since the midterm
Mixture of short-answer questions and writing snippets of code
Closed book and notes, no electronic anything

Relevant reference material will be provided

Old exams and study guide will be posted on schedule page

®)

-

Course Summary

We have covered:

Programming in the large
 The C programming language
» Testing
e Building
* Debugging
* Program & programming style
e Data structures
e Modularity
* Performance

i)

-

Course Summary

We have covered (cont.):

Under the hood

 Number systems

e Language levels tour
* Assembly language
 Machine language
« Assemblers and linkers

« Service levels tour
« Exceptions and processes
« Storage management
 Dynamic memory management
* Process management
e |/O management
« Signals

®)

-

The end.

return EXIT_SUCCESS:

)

	Signals
	Goals of this Lecture
	Agenda
	Unix Process Control
	Process Control Implementation
	Process Control Implementation (cont.)
	Agenda
	Signals
	Signals
	Examples of Signals
	Agenda
	Sending Signals via Keystrokes
	Sending Signals via Commands
	Sending Signals via Function Calls
	Sending Signals via Function Calls
	Agenda
	Handling Signals
	Installing a Signal Handler
	SIG_DFL
	SIG_IGN
	Uncatchable Signals
	Signal Handling Example 1
	Signal Handling Example 2
	Signal Handling Example 3
	Example 3 Problem
	Example 3 Solution
	Agenda
	Alarms
	Alarm Example 1
	Alarm Example 2
	Summary
	Summary
	Summary (cont.)
	Wrapping Up the Course
	Course Summary
	Course Summary
	The end.

