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Multi-File Programs

iIntmath.h (interface)

#i1fndet INTMATH_INCLUDED
#define INTMATH_INCLUDED
int gcd(int 1, Int j);
int Icm(int 1, Int j);
#endif

Intmath.c (implementation)

#include "intmath.h"

int gcd(int 1, Int j)
{ 1Int temp;
while (J !'= 0)
{temp =1 % J;

1 =];
J = temp;

}

return i;

}

int lem(int 1, Int j)
{ return (i / gcd(i, j)) * j;
ks

testintmath.c (client)

#include "intmath.h"
#include <stdio.h>

int main(void)
{ iInt 1;
int j;
printf(""Enter the first integer:\n");
scanf("'%d", &i);
printf("'Enter the second integer:\n");
scanf("'%d", &j);
printf(*'Greatest common divisor: %d.\n",
ged(i, §));
printf('Least common multiple: %d.\n",
lem(i, 3);
return O;

+

Note: intmath.h is
#included into intmath.c
and testintmath.c
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Motivation for Make (Part 1)

Building testintmath, approach 1.

 Use one gcc217 command to
preprocess, compile, assemble, and link

testintmath.c intmath.h intmath.c

N .

gcc2l7 testintmath.c intmath.c —o testintmath

N

testintmath
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Motivation for Make (Part 2)

Building testintmath, approach 2:

* Preprocess, compile, assemble to produce .o files
 Link to produce executable binary file

Recall: -c option
tells gcc217 to omit link

O

testintmath.c intmath.h intmath.c

900217(—C)testintmath-c\\\\\\\ gcc217(—c) intmath.c

N N

testintmath.o intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath

aa

testintmath
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Partial Builds

Approach 2 allows for partial builds
« Example: Change intmath.c
e Must rebuild Tntmath.o and testintmath
 Need not rebuild testintmath.o

If program contains many files, could save many hours of build time

testintmath.c intmath_.h <::’;;;;;;;T;\::)

gcc2l7 —c testintmath-c\\\\\\\ gcc21l7 —c intmath.c

testintmath.o intmath.o

/

gcc21l7 testintmath.o intmath.o —o testintmath

aa

testintmath
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Partial Builds

However, changing a .h file can be more dramatic
 Example: Change intmath.h
e Intmath.h is #included into testintmath.c and intmath.c
e Must rebuild testintmath.o, intmath.o, and testintmath

testintmath.c intmath.h intmath.c
~—

\ /

gcc21l7 —c testintmath.c ‘\\\\\ gcc21l7 —c intmath.c

e IV

testintmath.o intmath.o

/

gcc21l7 testintmath.o intmath.o —o testintmath

aa

testintmath
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Wouldn’t It Be Nice If...

Observation
» Doing partial builds manually is tedious and error-prone
 Wouldn't it be nice if there were a tool...

How would the tool work?
e Input:
* Dependency graph (as shown previously)
» Specifies file dependencies
» Specifies commands to build each file from its dependents
o Date/time stamps of files
o Algorithm:
« If file B depends on A and

date/time stamp of A is newer than date/time stamp of B,
then rebuild B using the specified command

That’ s make!
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Make Command Syntax

Command syntax
$ man make
SYNOPSIS
make [-f makefile] [options] [targets]

e nakefile

» Textual representation of dependency graph
» Contains dependency rules
o Default name is makefi le, then Makefile

e target
 What make should build

o Usually: .o file, or an executable binary file
o Default is first one defined in makefile

o)




/

Dependency Rules in Makefile

Dependency rule syntax

target: dependencies
<tab>command

e target: the file you want to build

= dependencies: the files on which the target depends

e command: (after a TAB character) what to execute to
create the target

Dependency rule semantics
e Build target iffit is older than any of its dependencies
e Use command to do the build

Work recursively; examples illustrate...

n




Makefile Version

Makefile:

1

testintmath: testintmath.o intmath.o
gcc21l7 testintmath.o intmath.o -0 testintmath

testintmath.o: testintmath.c
gcc21l7 -c testintmath.c

intmath.h

gcc21l7 -c intmath.c

intmath.o: 1intmath.c 7htmath

-h

l

_— T~

’iestintmath-c

intmath:ﬁ\

N\

gcc21l7 —c testintmath.c

N4

testintmath.o
——

intmath.c

/

gcc2l7 —c intmath.c

K

intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath

\/

testintmath

12
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Version 1 i1n Action

At first, to build testintmath
make issues all three gcc
commands

Use the touch command to

change the date/time stamp

of intmath.c

$ make testintmath
gcc2l7 -c testintmath.c
gcc2l7 -c intmath.c

gcc2l7 testintmath.o intmath-.o -0 testintmath

$ touch intmath.c ‘4’///

$ make testintmath
gcc2l7 -c intmath.c

$ make testintmath
make: “testintmath® is up to date.

$ make
make: “testintmath® is up to date.

Ny

gcc2l1l7 testintmath.o intmath.o -o testintmath “——‘\\\\\\\\\\\

make does a partial build

N

target is up to date

make notes that the specified

The default target is testintmath,

the target of the first dependency rule

2




> 1Clicker Question

Q: If you were making a Makefi le for this program,
what should a.o depend on?

d.h
y
A a c.h a.h
\+_
B.a.c a.c b.c
C.a.c a.h a+o b+o

D.a.h c.h d.h \@/

E.a.c a.h ¢c.h d.h
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Makefile Guidelines

In a proper Makefile, each object file:
* Depends upon its .c file

a.o: a.c a.h c.h d.h

* Does not depend upon any other .c file

* Does not depend upon any .o file

* Depends upon any .h files that are #included directly or indirectly

5




> 1Clicker Question

Q: If you were making a Makefi le for this program,
what should a depend on?

d.h

v
A.a.o b.o C'h\ai
B.a.o b.o a.c b.c a.c b.c
C.a.o b.o a.h c.h d.h ai, bi
D.a.c b.c a.h c.h d.h \@/
E.a.o b.o a.c b.c a.h c.h d.h
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Makefile Guidelines

a:- a.ob.o

In a proper Makefile, each executable:
» Depends upon the .o files that comprise it
* Does not depend upon any .c files
* Does not depend upon any .h files

P
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Motivation for Make
Make Fundamentals
Non-File Targets

Macros

2
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Non-File Targets

Adding useful shortcuts for the programmer
= make all: create the final executable binary file
= make clean: delete all .o files, executable binary file
= make clobber: delete all Emacs backup files, all .o files, executable

Commands in the example
« rm —F: remove files without querying the user
 Files ending in ‘~" and starting/ending in ‘#" are Emacs backup files

all: testintmath

clobber: clean
rm -F *~ \#*\#
clean:
rm - testintmath *.o

9




Makefile Version 2

# Dependency rules for non-file targets
all: testintmath

clobber: clean
rm -F *~ \#*\#
clean: :
rm -f testintmath *.0

# Dependency rules for fTile targets
testintmath: testintmath.o intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath
testintmath.o: testintmath.c intmath.h

gcc21l7 -c testintmath.c
intmath.o: intmath.c intmath.h

gcc21l7 -c intmath.c

20



-
Version 2 Iin Action

make observes that “clean” target
doesn’ t exist; attempts to build it
by issuing “rm” command

5 A Same idea here, but
make clean

rm -f testintmath *.o “clobber” depends upon “clean”
‘$ make clobber
v

m -f testintmath *.o
rm -F *~ \#*\#

$ make all
gcc2l7 -c testintmath.c
gcc2l7 -c intmath.c

gcc2l7 testintmath.o intmath.o -o testintmath

$ make
make: Nothing to be done for "all”. ‘\\\

“all” depends upon
“testintmath”

13

all” is the default target

2




-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros

2




-

Macros

make has a macro facility

* Performs textual substitution
o Similar to C preprocessor’s #define

Macro definition syntax

macroname = macrodefinition

= make replaces $(macroname) with macrodefinitionin remainder of
Makefile

Example: Make it easy to change build commands
CC = gcc2l7

Example: Make it easy to change build flags
CFLAGS = -D NDEBUG —O

2




Makefile Version 3

# Macros

CC = gcc217

# CC = gcc2l7/m

CFLAGS =

# CFLAGS = -g

# CFLAGS = -D NDEBUG

# CFLAGS = -D NDEBUG -0

# Dependency rules for non-file targets
all: testintmath

clobber: clean
rm - *~ \#*\#
clean: _
rm -f testintmath *.o

# Dependency rules for file targets
testintmath: testintmath.o intmath.o
$(CC) $(CFLAGS) testintmath.o intmath.o -o testintmath
testintmath.o: testintmath.c intmath.h
$(CC) $(CFLAGS) -c testintmath.c
intmath.o: intmath.c intmath.h
$(CC) $(CFLAGS) -c intmath.c

24
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Version 3 1n Action

Same as Version 2

%)
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Makefile Gotchas

Beware:

« Each command (i.e., second line of each dependency rule) must
begin with a tab character, not spaces

e Usethe rm —F command with caution

)
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Making Makefiles

In this course
o Create Makefiles manually

Beyond this course

e Can use tools to generate Makefiles
o See mkmT, others

7
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Advanced: Implicit Rules se

s

make has implicit rules for compiling and linking C programs
= make knows how to build x.0 from x.c

o Automatically uses $(CC) and $(CFLAGS)
e make knows how to build an executable from .o files

e Automatically uses $(CC)

make has implicit rules for inferring dependencies
e make will assume that x.0 depends upon x.c

Not required (and potentially confusing):
see appendix of these slides for detalls!

%)
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Make Resources

C Programming: A Modern Approach (King) Section 15.4

GNU make
o http://www.gnu.org/software/make/manual/make.html

)
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Summary

Motivation for Make
» Automation of partial builds

Make fundamentals (Makefile version 1)
* Dependency rules, targets, dependencies, commands

Non-file targets (Makefile version 2)

Macros (Makefile version 3)

»)
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Debugging (Part 1)

%

%
3]

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

"
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Goals of this Lecture

Help you learn about:
« Strategies and tools for debugging your code

Why?

* Debugging large programs can be difficult

» A power programmer knows a wide variety of debugging strategies

* A power programmer knows about tools that facilitate debugging
* Debuggers
* Version control systems

2
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Testing vs. Debugging

Testing
 What should | do to try to break my program?

Debugging
 What should | do to try to fix my program?

2
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

*




Understand Error Messages

Debugging at build-time Is easier than

gtﬂ
o0

ETETT ey

debugging at run-time, if and only if you...

Understand the error messages!

#include <stdioo.h>

return O.
int main(void)

return O;

}

/* Print "hello, world" to stdout and

{ printf(C'hello, world\n');

What are the
errors? (No
fair looking at
the next slide!)

35
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Understand Error Messages

#include <stdioo.h>

/* Print "hello, world" to stdout and
return O.

int main(void)

{ printf(C'hello, world\n");

Which tool
(preprocessor,
compiler, or

] return O; linker) reports
the error(s)?

$ gcc217 hello.c -o hello »

hello.c:1:20: error: stdioo.h: No such file or

directory

hello.c:2:1: error: unterminated comment

36
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Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ printf(C'hello, world\n")
return O;

ks

What are the
errors? (No
fair looking at
the next slide!)

i)
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Understand Error Messages

ETETT ey

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ printf(C'hello, world\n")
return O;

ks

Which tool
(preprocessor,
compiler, or

linker) reports
the error?

/

$ gcc217 hello.c -o hello ‘//
hello.c: In function "main-®:
hello.c:6:4: error: expected ";" before "return-

hello.c:7:1: warning: control reaches end of non-void
function

38
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Understand Error Messages

return 0. */
int main(void)

return O;

}

{ prinf('hello,

#include <stdio.h>
/* Print "hello,

worlld"™ to stdout and

world\n'");

What are the
errors? (No
fair looking at
the next slide!)

)
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Understand Error Messages

ETETT ey

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ prinf("hello, world\n")
return O;

ks

Which tool
(preprocessaor,
compiler, or

linker) reports
the error?

$ gcc217 hello.c -o hello g/

hello.c: In function "main-”:

hello.c:5:1: warning: implicit declaration of function
"prinf-

/tmp/ccLSPMTR.o: In function "main®:
hello.c:(.text+0x10): undefined reference to "prinf-
collect2: Id returned 1 exit status

40



Understand Error Messages

#include <stdio.h>
#include <stdlib.h>
int main(void)
{ enum StateType
{ STATE REGULAR,
STATE__INWORD

}

return EXIT_SUCCESS;

}

printf(*"jJust hanging around\n');

gtﬂ
o0

ETETT ey

What are the
errors? (No
fair looking at
the next slide!)

41



Understand Error Messages

#include <stdio.h>
#include <stdlib.h>
int main(void)
{ enum StateType
{ STATE REGULAR,
STATE__INWORD
+

return EXIT_SUCCESS;

printf(*"jJust hanging around\n');

s

ETETT ey

What does
this error

message even
mean?

before string constant

$ gcc217 hello.c -o hello
hello.c:9:11: error: expected declaration specifiers or “...’

42
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Understand Error Messages

Caveats concerning error messages
e Line # in error message may be approximate
e Error message may seem nonsensical
o Compiler may not report the real error

Tips for eliminating error messages

» Clarity facilitates debugging
 Make sure code is indented properly

* Look for missing semicolons
» At ends of structure and enum type definitions
« At ends of function declarations

 Work incrementally
o Start at first error message
» Fix, rebuild, repeat

®)
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

*
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Think Before Writing

Inappropriate changes could make matters worse, so...

Think before changing your code
« Explain the code to:
e Yourself
e« Someone else
* A Teddy bear / plushie stuffed tiger?
e Do experiments
» But make sure they're disciplined

*
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs
(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

¥




Look for Common Bugs

Some of our favorites:

switch (1)
{ case O:
break;

case 1:
case 2:

+

it (i =5)

iIT (5 <1 <10)

int 1;

scanf("'%d', 1);

char c;

c = getchar();

whille (c = getchar() = EOF)

What are
the

LG D) errors?

47
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Look for Common Bugs

Some of our favorites:

for (i = 0; 1 < 10; i1++)
{ for ( =0; J < 10; i1++)
{ ...

}
}

for (i = 0; 1 < 10; i1++)
{ for g = 10; j >= 0; j++)
{

}
}

What are
the
errors?

®




Look for Common Bugs

Some of our favorites:

{ 1Int 1;

What value is
written if this
statement is
present? Absent?

i =5;
iIT (something)
i =6:
}
orintFCud\n", i):

}

49
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

“)
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Divide and Conquer

Divide and conquer: To debug a program...

* Incrementally find smallest input file that illustrates the bug

e Approach 1: Remove input
 Start with file

* Incrementally remove lines
until bug disappears

* Examine most-recently-removed lines

» =

e Approach 2: Add input o
« Start with small subset of file =) =)

e Incrementally add lines
until bug appears

 Examine most-recently-added lines

L
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Divide and Conquer

Divide and conquer: To debug a module...
* Incrementally find smallest client subset that illustrates the bug

 Approach 1: Remove code
 Start with test client
* Incrementally remove lines of code until bug disappears
« Examine most-recently-removed lines

e Approach 2: Add code
o Start with minimal client
* Incrementally add lines of test client until bug appears
 Examine most-recently-added lines

2
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests
(6) Display output

(7) Use a debugger

(8) Focus on recent changes

)
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Add More Internal Tests

(5) Add more internal tests

* Internal tests help find bugs (see “Testing” lecture)

 Internal test also can help eliminate bugs

« Validating parameters & checking invariants
can eliminate some functions from the bug hunt

"




-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

)
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Display Output

Write values of important variables at critical spots

e Poor:

printf("'%d", keyvariable);

* Maybe better:

stdout is buffered,;
program may crash
before output appears

printf("'%d\n", keyvariable);

o Better:

Printing "\n" flushes
the stdout buffer, but
not if stdout is

redirected to a file

printf(""%d", keyvariable);
fflush(stdout);

Call FFlush() to flush
stdout buffer

explicitly

)
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Display Output

 Maybe even better:

fprintf(stderr, "%d", keyvariable);

 Maybe better still:

Write debugging
output to stdertr;
debugging output
can be separated
from normal output
via redirection

FILE *fp = fopen("logFfile”, "w™);

fprintf(fp, "%d", keyvariable);
TFrlush(fp);

Bonus: stderr is
unbuffered

Write to a log file

)
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

°)
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Use a Debugger

Use a debugger

 Alternative to displaying output

)
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The GDB Debugger

GNU Debugger

« Part of the GNU development environment
* Integrated with Emacs editor
 Allows user to:

 Run program
Set breakpoints
Step through code one line at a time
Examine values of variables during run
» Eftc.

For details see precept tutorial, precept reference sheet,
Appendix 2 of these slides

)
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Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes
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Focus on Recent Changes

Focus on recent changes

o Corollary: Debug now, not later

Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

Easier:

(1) Compose a little
(2) Test a little

(3) Debug a little
(4) Compose a little
(5) Test a little

(6) Debug a little

62



Focus on Recent Changes

Focus on recent change (cont.)

o Corollary: Maintain old versions

Difficult:

(1) Change code

(2) Note new bug

(3) Try to remember what
changed since last
version

Easier:

(1) Backup current version
(2) Change code
(3) Note new bug
(4) Compare code with
last version to
determine what changed

63



Maintaining Old Versions

To maintain old versions...

Approach 1: Manually copy project directory

8 P

mkdir myproject
cd myproject

Create project files here.
cd ..
Cp —r myproject myprojectDateTime

cd myproject

Continue creating project files here.

64
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Maintaining Old Versions

Approach 2: Use a Revision Control System such as
subversion or git
» Allows programmer to:
e Check-in source code files from working copy to repository
o« Commit revisions from working copy to repository
» saves all old versions
 Update source code files from repository to working copy
e Can retrieve old versions
» Appropriate for one-developer projects
» Extremely useful, almost necessary for multideveloper projects!

Not required for COS 217, but good to know!

Google “subversion svn” or “git” for more information.

J
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Summary

General debugging strategies and tools:

(1) Understand error messages
(2) Think before writing
(3) Look for common bugs
(4) Divide and conquer
(5) Add more internal tests
(6) Display output
(7) Use a debugger
 Use GDB!!!
(8) Focus on recent changes
« Consider using git, etc.

J
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Appendix 1: Implicit Rules se

make has implicit rules for compiling and linking C programs
= make knows how to build x.0 from x.c

o Automatically uses $(CC) and $(CFLAGS)
e make knows how to build an executable from .o files

e Automatically uses $(CC)

intmath.o: intmath.c intmath.h
$(CC) $(CFLAGS) —c intmath.c

i B

intmath.o: intmath.c 1ntmath.h

testintmath: testintmath.o iIntmath.o
$(CC) testintmath.o intmath.o —o testintmath

ENE

testintmath: testintmath.o 1ntmath.o

67



-

Makefile Version 4

°)
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Version 4 in Action

Same as Version 2

)




-

Implicit Dependencies

make has implicit rules for inferring dependencies
e make will assume that x.0 depends upon x.c

intmath.o: intmath.c intmath.h

1 ]

intmath.o: Intmath.h

")
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Makefile Version 5

©
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Version 5 1n Action

Same as Version 2

2
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Makefile Gotchas

Beware:

 To use an implicit rule to make an executable,

the executable must have the same name as one of the .o files

Correct: myprog: myprog.o someotherfile.o

wWon't work: myprog: somefile.o someotherfile.o

v
x

S




Appendix 2: Using GDB 3

An example program
File testintmath.c:

s

Euclid’s algorithm

Don’t be concerned

with detalls

#includf</s,1:di©./k1>

int gcd(int 1, Int j)
{ 1Int temp;

while ( = 0)

{ temp =1 % J;

1= j;
J = temp;
ks
return 1;

}

int Iem(int 1,

}

}nt main(void)

{

int 1Gcd;
int 1Lcm;
1Gcd = gcd(8, 12);
iLcm = Icm(8, 12);
printf('%d %d\n",
return O;

1Gcd, 1Lcm);

int j)
{ return (1 /7 gcd(a, J)) * J;

The program is correct

But let’ s pretend it has a
runtime error in gcd()...

74
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Using GDB

General GDB strategy:

» Execute the program to the point of interest
o Use breakpoints and stepping to do that

 Examine the values of variables at that point

")
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Using GDB

Typical steps for using GDB:

(a) Build with —g
gcc2l7 —g testintmath.c —o testintmath

» Adds extra information to executable file that GDB uses

(b) Run Emacs, with no arguments
emacs

(c) Run GDB on executable file from within Emacs
<Esc key> x gdb <Enter key> testintmath <Enter key>
(d) Set breakpoints, as desired

break main
 GDB sets a breakpoint at the first executable line of main()

break gcd
 GDB sets a breakpoint at the first executable line of gcd()

J
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Using GDB

Typical steps for using GDB (cont.):
(e) Run the program

run
« GDB stops at the breakpoint in main()
 Emacs opens window showing source code
« Emacs highlights line that is to be executed next

continue
» GDB stops at the breakpoint in gcd()
« Emacs highlights line that is to be executed next
(f) Step through the program, as desired
step (repeatedly)
« GDB executes the next line (repeatedly)

 Note: When next line is a call of one of your functions:
= step command steps into the function
= next command steps over the function, that is, executes the next line
without stepping into the function

"
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Using GDB

Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i
print j
print temp
* GDB prints the value of each variable
(h) Examine the function call stack, if desired
where
» GBB prints the function call stack
« Useful for diagnosing crash in large program
(i) Exit gdb
quit
(j)) Exit Emacs
<Ctrl-x key> <Ctrl-c key>

")
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Using GDB

GDB can do much more:

 Handle command-line arguments
run argl arg2

Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile

Print values of expressions
Break conditionally
» Etc.

"
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