~N

"Princeton University

Computer Science 217: Introduction to Programming Systems

Building Multi-File Programs
with the make Tool

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros

Multi-File Programs

iIntmath.h (interface)

#i1fndet INTMATH_INCLUDED
#define INTMATH_INCLUDED
int gcd(int 1, Int j);
int Icm(int 1, Int j);
#endif

Intmath.c (implementation)

#include "intmath.h"

int gcd(int 1, Int j)
{ 1Int temp;
while (J !'= 0)
{temp =1 % J;

1 =];
J = temp;

}

return i;

}

int lem(int 1, Int j)
{ return (i / gcd(i, j)) * j;
ks

testintmath.c (client)

#include "intmath.h"
#include <stdio.h>

int main(void)
{ iInt 1;
int j;
printf(""Enter the first integer:\n");
scanf("'%d", &i);
printf("'Enter the second integer:\n");
scanf("'%d", &j);
printf(*'Greatest common divisor: %d.\n",
ged(i, §));
printf('Least common multiple: %d.\n",
lem(i, 3);
return O;

+

Note: intmath.h is
#included into intmath.c
and testintmath.c

-
Motivation for Make (Part 1)

Building testintmath, approach 1.

 Use one gcc217 command to
preprocess, compile, assemble, and link

testintmath.c intmath.h intmath.c

N .

gcc2l7 testintmath.c intmath.c —o testintmath

N

testintmath

-
Motivation for Make (Part 2)

Building testintmath, approach 2:

* Preprocess, compile, assemble to produce .o files
 Link to produce executable binary file

Recall: -c option
tells gcc217 to omit link

O

testintmath.c intmath.h intmath.c

900217(—C)testintmath-c\\\\\\\ gcc217(—c) intmath.c

N N

testintmath.o intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath

aa

testintmath

-
Partial Builds

Approach 2 allows for partial builds
« Example: Change intmath.c
e Must rebuild Tntmath.o and testintmath
 Need not rebuild testintmath.o

If program contains many files, could save many hours of build time

testintmath.c intmath_.h <::’;;;;;;;T;\::)

gcc2l7 —c testintmath-c\\\\\\\ gcc21l7 —c intmath.c

testintmath.o intmath.o

/

gcc21l7 testintmath.o intmath.o —o testintmath

aa

testintmath

-
Partial Builds

However, changing a .h file can be more dramatic
 Example: Change intmath.h
e Intmath.h is #included into testintmath.c and intmath.c
e Must rebuild testintmath.o, intmath.o, and testintmath

testintmath.c intmath.h intmath.c
~—

\ /

gcc21l7 —c testintmath.c ‘\\\\\ gcc21l7 —c intmath.c

e IV

testintmath.o intmath.o

/

gcc21l7 testintmath.o intmath.o —o testintmath

aa

testintmath

-
Wouldn’t It Be Nice If...

Observation
» Doing partial builds manually is tedious and error-prone
 Wouldn't it be nice if there were a tool...

How would the tool work?
e Input:
* Dependency graph (as shown previously)
» Specifies file dependencies
» Specifies commands to build each file from its dependents
o Date/time stamps of files
o Algorithm:
« If file B depends on A and

date/time stamp of A is newer than date/time stamp of B,
then rebuild B using the specified command

That’ s make!

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros

-

Make Command Syntax

Command syntax
$ man make
SYNOPSIS
make [-f makefile] [options] [targets]

e nakefile

» Textual representation of dependency graph
» Contains dependency rules
o Default name is makefi le, then Makefile

e target
 What make should build

o Usually: .o file, or an executable binary file
o Default is first one defined in makefile

o)

/

Dependency Rules in Makefile

Dependency rule syntax

target: dependencies
<tab>command

e target: the file you want to build

= dependencies: the files on which the target depends

e command: (after a TAB character) what to execute to
create the target

Dependency rule semantics
e Build target iffit is older than any of its dependencies
e Use command to do the build

Work recursively; examples illustrate...

n

Makefile Version

Makefile:

1

testintmath: testintmath.o intmath.o
gcc21l7 testintmath.o intmath.o -0 testintmath

testintmath.o: testintmath.c
gcc21l7 -c testintmath.c

intmath.h

gcc21l7 -c intmath.c

intmath.o: 1intmath.c 7htmath

-h

l

_— T~

’iestintmath-c

intmath:ﬁ\

N\

gcc21l7 —c testintmath.c

N4

testintmath.o
——

intmath.c

/

gcc2l7 —c intmath.c

K

intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath

\/

testintmath

12

/

Version 1 i1n Action

At first, to build testintmath
make issues all three gcc
commands

Use the touch command to

change the date/time stamp

of intmath.c

$ make testintmath
gcc2l7 -c testintmath.c
gcc2l7 -c intmath.c

gcc2l7 testintmath.o intmath-.o -0 testintmath

$ touch intmath.c ‘4’///

$ make testintmath
gcc2l7 -c intmath.c

$ make testintmath
make: “testintmath® is up to date.

$ make
make: “testintmath® is up to date.

Ny

gcc2l1l7 testintmath.o intmath.o -o testintmath “——‘\\\\\\\\\\\

make does a partial build

N

target is up to date

make notes that the specified

The default target is testintmath,

the target of the first dependency rule

2

> 1Clicker Question

Q: If you were making a Makefi le for this program,
what should a.o depend on?

d.h
y
A a c.h a.h
\+_
B.a.c a.c b.c
C.a.c a.h a+o b+o

D.a.h c.h d.h \@/

E.a.c a.h ¢c.h d.h

-

Makefile Guidelines

In a proper Makefile, each object file:
* Depends upon its .c file

a.o: a.c a.h c.h d.h

* Does not depend upon any other .c file

* Does not depend upon any .o file

* Depends upon any .h files that are #included directly or indirectly

5

> 1Clicker Question

Q: If you were making a Makefi le for this program,
what should a depend on?

d.h

v
A.a.o b.o C'h\ai
B.a.o b.o a.c b.c a.c b.c
C.a.o b.o a.h c.h d.h ai, bi
D.a.c b.c a.h c.h d.h \@/
E.a.o b.o a.c b.c a.h c.h d.h

-

Makefile Guidelines

a:- a.ob.o

In a proper Makefile, each executable:
» Depends upon the .o files that comprise it
* Does not depend upon any .c files
* Does not depend upon any .h files

P

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros

2

/

Non-File Targets

Adding useful shortcuts for the programmer
= make all: create the final executable binary file
= make clean: delete all .o files, executable binary file
= make clobber: delete all Emacs backup files, all .o files, executable

Commands in the example
« rm —F: remove files without querying the user
 Files ending in ‘~" and starting/ending in ‘#" are Emacs backup files

all: testintmath

clobber: clean
rm -F *~ \#*\#
clean:
rm - testintmath *.o

9

Makefile Version 2

Dependency rules for non-file targets
all: testintmath

clobber: clean
rm -F *~ \#*\#
clean: :
rm -f testintmath *.0

Dependency rules for fTile targets
testintmath: testintmath.o intmath.o

gcc2l7 testintmath.o intmath.o —o testintmath
testintmath.o: testintmath.c intmath.h

gcc21l7 -c testintmath.c
intmath.o: intmath.c intmath.h

gcc21l7 -c intmath.c

20

-
Version 2 Iin Action

make observes that “clean” target
doesn’ t exist; attempts to build it
by issuing “rm” command

5 A Same idea here, but
make clean

rm -f testintmath *.o “clobber” depends upon “clean”
‘$ make clobber
v

m -f testintmath *.o
rm -F *~ \#*\#

$ make all
gcc2l7 -c testintmath.c
gcc2l7 -c intmath.c

gcc2l7 testintmath.o intmath.o -o testintmath

$ make
make: Nothing to be done for "all”. ‘\\\

“all” depends upon
“testintmath”

13

all” is the default target

2

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets

Macros

2

-

Macros

make has a macro facility

* Performs textual substitution
o Similar to C preprocessor’s #define

Macro definition syntax

macroname = macrodefinition

= make replaces $(macroname) with macrodefinitionin remainder of
Makefile

Example: Make it easy to change build commands
CC = gcc2l7

Example: Make it easy to change build flags
CFLAGS = -D NDEBUG —O

2

Makefile Version 3

Macros

CC = gcc217

CC = gcc2l7/m

CFLAGS =

CFLAGS = -g

CFLAGS = -D NDEBUG

CFLAGS = -D NDEBUG -0

Dependency rules for non-file targets
all: testintmath

clobber: clean
rm - *~ \#*\#
clean: _
rm -f testintmath *.o

Dependency rules for file targets
testintmath: testintmath.o intmath.o
$(CC) $(CFLAGS) testintmath.o intmath.o -o testintmath
testintmath.o: testintmath.c intmath.h
$(CC) $(CFLAGS) -c testintmath.c
intmath.o: intmath.c intmath.h
$(CC) $(CFLAGS) -c intmath.c

24

-

Version 3 1n Action

Same as Version 2

%)

-

Makefile Gotchas

Beware:

« Each command (i.e., second line of each dependency rule) must
begin with a tab character, not spaces

e Usethe rm —F command with caution

)

-

Making Makefiles

In this course
o Create Makefiles manually

Beyond this course

e Can use tools to generate Makefiles
o See mkmT, others

7

-

~N

Advanced: Implicit Rules se

s

make has implicit rules for compiling and linking C programs
= make knows how to build x.0 from x.c

o Automatically uses $(CC) and $(CFLAGS)
e make knows how to build an executable from .o files

e Automatically uses $(CC)

make has implicit rules for inferring dependencies
e make will assume that x.0 depends upon x.c

Not required (and potentially confusing):
see appendix of these slides for detalls!

%)

-

Make Resources

C Programming: A Modern Approach (King) Section 15.4

GNU make
o http://www.gnu.org/software/make/manual/make.html

)

-

Summary

Motivation for Make
» Automation of partial builds

Make fundamentals (Makefile version 1)
* Dependency rules, targets, dependencies, commands

Non-file targets (Makefile version 2)

Macros (Makefile version 3)

»)

"Princeton University

Computer Science 217: Introduction to Programming Systems

~N

Debugging (Part 1)

%

%
3]

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

"

/

Goals of this Lecture

Help you learn about:
« Strategies and tools for debugging your code

Why?

* Debugging large programs can be difficult

» A power programmer knows a wide variety of debugging strategies

* A power programmer knows about tools that facilitate debugging
* Debuggers
* Version control systems

2

-

Testing vs. Debugging

Testing
 What should | do to try to break my program?

Debugging
 What should | do to try to fix my program?

2

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

*

Understand Error Messages

Debugging at build-time Is easier than

gtﬂ
o0

ETETT ey

debugging at run-time, if and only if you...

Understand the error messages!

#include <stdioo.h>

return O.
int main(void)

return O;

}

/* Print "hello, world" to stdout and

{ printf(C'hello, world\n');

What are the
errors? (No
fair looking at
the next slide!)

35

i { T
(Gern ~ e

ETETT ey

Understand Error Messages

#include <stdioo.h>

/* Print "hello, world" to stdout and
return O.

int main(void)

{ printf(C'hello, world\n");

Which tool
(preprocessor,
compiler, or

] return O; linker) reports
the error(s)?

$ gcc217 hello.c -o hello »

hello.c:1:20: error: stdioo.h: No such file or

directory

hello.c:2:1: error: unterminated comment

36

/

Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ printf(C'hello, world\n")
return O;

ks

What are the
errors? (No
fair looking at
the next slide!)

i)

s

Understand Error Messages

ETETT ey

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ printf(C'hello, world\n")
return O;

ks

Which tool
(preprocessor,
compiler, or

linker) reports
the error?

/

$ gcc217 hello.c -o hello ‘//
hello.c: In function "main-®:
hello.c:6:4: error: expected ";" before "return-

hello.c:7:1: warning: control reaches end of non-void
function

38

/

Understand Error Messages

return 0. */
int main(void)

return O;

}

{ prinf('hello,

#include <stdio.h>
/* Print "hello,

worlld"™ to stdout and

world\n'");

What are the
errors? (No
fair looking at
the next slide!)

)

s

Understand Error Messages

ETETT ey

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. */

int main(void)

{ prinf("hello, world\n")
return O;

ks

Which tool
(preprocessaor,
compiler, or

linker) reports
the error?

$ gcc217 hello.c -o hello g/

hello.c: In function "main-”:

hello.c:5:1: warning: implicit declaration of function
"prinf-

/tmp/ccLSPMTR.o: In function "main®:
hello.c:(.text+0x10): undefined reference to "prinf-
collect2: Id returned 1 exit status

40

Understand Error Messages

#include <stdio.h>
#include <stdlib.h>
int main(void)
{ enum StateType
{ STATE REGULAR,
STATE__INWORD

}

return EXIT_SUCCESS;

}

printf(*"jJust hanging around\n');

gtﬂ
o0

ETETT ey

What are the
errors? (No
fair looking at
the next slide!)

41

Understand Error Messages

#include <stdio.h>
#include <stdlib.h>
int main(void)
{ enum StateType
{ STATE REGULAR,
STATE__INWORD
+

return EXIT_SUCCESS;

printf(*"jJust hanging around\n');

s

ETETT ey

What does
this error

message even
mean?

before string constant

$ gcc217 hello.c -o hello
hello.c:9:11: error: expected declaration specifiers or “...’

42

/

Understand Error Messages

Caveats concerning error messages
e Line # in error message may be approximate
e Error message may seem nonsensical
o Compiler may not report the real error

Tips for eliminating error messages

» Clarity facilitates debugging
 Make sure code is indented properly

* Look for missing semicolons
» At ends of structure and enum type definitions
« At ends of function declarations

 Work incrementally
o Start at first error message
» Fix, rebuild, repeat

®)

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for familiar bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

*

/

Think Before Writing

Inappropriate changes could make matters worse, so...

Think before changing your code
« Explain the code to:
e Yourself
e« Someone else
* A Teddy bear / plushie stuffed tiger?
e Do experiments
» But make sure they're disciplined

*

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs
(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

¥

Look for Common Bugs

Some of our favorites:

switch (1)
{ case O:
break;

case 1:
case 2:

+

it (i =5)

iIT (5 <1 <10)

int 1;

scanf("'%d', 1);

char c;

c = getchar();

whille (c = getchar() = EOF)

What are
the

LG D) errors?

47

/

Look for Common Bugs

Some of our favorites:

for (i = 0; 1 < 10; i1++)
{ for (=0; J < 10; i1++)
{ ...

}
}

for (i = 0; 1 < 10; i1++)
{ for g = 10; j >= 0; j++)
{

}
}

What are
the
errors?

®

Look for Common Bugs

Some of our favorites:

{ 1Int 1;

What value is
written if this
statement is
present? Absent?

i =5;
iIT (something)
i =6:
}
orintFCud\n", i):

}

49

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

“)

/

Divide and Conquer

Divide and conquer: To debug a program...

* Incrementally find smallest input file that illustrates the bug

e Approach 1: Remove input
 Start with file

* Incrementally remove lines
until bug disappears

* Examine most-recently-removed lines

» =

e Approach 2: Add input o
« Start with small subset of file =) =)

e Incrementally add lines
until bug appears

 Examine most-recently-added lines

L

/

Divide and Conquer

Divide and conquer: To debug a module...
* Incrementally find smallest client subset that illustrates the bug

 Approach 1: Remove code
 Start with test client
* Incrementally remove lines of code until bug disappears
« Examine most-recently-removed lines

e Approach 2: Add code
o Start with minimal client
* Incrementally add lines of test client until bug appears
 Examine most-recently-added lines

2

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests
(6) Display output

(7) Use a debugger

(8) Focus on recent changes

)

-

Add More Internal Tests

(5) Add more internal tests

* Internal tests help find bugs (see “Testing” lecture)

 Internal test also can help eliminate bugs

« Validating parameters & checking invariants
can eliminate some functions from the bug hunt

"

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

)

-

Display Output

Write values of important variables at critical spots

e Poor:

printf("'%d", keyvariable);

* Maybe better:

stdout is buffered,;
program may crash
before output appears

printf("'%d\n", keyvariable);

o Better:

Printing "\n" flushes
the stdout buffer, but
not if stdout is

redirected to a file

printf(""%d", keyvariable);
fflush(stdout);

Call FFlush() to flush
stdout buffer

explicitly

)

-

Display Output

 Maybe even better:

fprintf(stderr, "%d", keyvariable);

 Maybe better still:

Write debugging
output to stdertr;
debugging output
can be separated
from normal output
via redirection

FILE *fp = fopen("logFfile”, "w™);

fprintf(fp, "%d", keyvariable);
TFrlush(fp);

Bonus: stderr is
unbuffered

Write to a log file

)

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

°)

-

Use a Debugger

Use a debugger

 Alternative to displaying output

)

-

The GDB Debugger

GNU Debugger

« Part of the GNU development environment
* Integrated with Emacs editor
 Allows user to:

 Run program
Set breakpoints
Step through code one line at a time
Examine values of variables during run
» Eftc.

For details see precept tutorial, precept reference sheet,
Appendix 2 of these slides

)

-

Agenda

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8) Focus on recent changes

L

Focus on Recent Changes

Focus on recent changes

o Corollary: Debug now, not later

Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

Easier:

(1) Compose a little
(2) Test a little

(3) Debug a little
(4) Compose a little
(5) Test a little

(6) Debug a little

62

Focus on Recent Changes

Focus on recent change (cont.)

o Corollary: Maintain old versions

Difficult:

(1) Change code

(2) Note new bug

(3) Try to remember what
changed since last
version

Easier:

(1) Backup current version
(2) Change code
(3) Note new bug
(4) Compare code with
last version to
determine what changed

63

Maintaining Old Versions

To maintain old versions...

Approach 1: Manually copy project directory

8 P

mkdir myproject
cd myproject

Create project files here.
cd ..
Cp —r myproject myprojectDateTime

cd myproject

Continue creating project files here.

64

/

Maintaining Old Versions

Approach 2: Use a Revision Control System such as
subversion or git
» Allows programmer to:
e Check-in source code files from working copy to repository
o« Commit revisions from working copy to repository
» saves all old versions
 Update source code files from repository to working copy
e Can retrieve old versions
» Appropriate for one-developer projects
» Extremely useful, almost necessary for multideveloper projects!

Not required for COS 217, but good to know!

Google “subversion svn” or “git” for more information.

J

-

Summary

General debugging strategies and tools:

(1) Understand error messages
(2) Think before writing
(3) Look for common bugs
(4) Divide and conquer
(5) Add more internal tests
(6) Display output
(7) Use a debugger
 Use GDB!!!
(8) Focus on recent changes
« Consider using git, etc.

J

s

Appendix 1: Implicit Rules se

make has implicit rules for compiling and linking C programs
= make knows how to build x.0 from x.c

o Automatically uses $(CC) and $(CFLAGS)
e make knows how to build an executable from .o files

e Automatically uses $(CC)

intmath.o: intmath.c intmath.h
$(CC) $(CFLAGS) —c intmath.c

i B

intmath.o: intmath.c 1ntmath.h

testintmath: testintmath.o iIntmath.o
$(CC) testintmath.o intmath.o —o testintmath

ENE

testintmath: testintmath.o 1ntmath.o

67

-

Makefile Version 4

°)

-

Version 4 in Action

Same as Version 2

)

-

Implicit Dependencies

make has implicit rules for inferring dependencies
e make will assume that x.0 depends upon x.c

intmath.o: intmath.c intmath.h

1]

intmath.o: Intmath.h

")

-

Makefile Version 5

©

-

Version 5 1n Action

Same as Version 2

2

-

Makefile Gotchas

Beware:

 To use an implicit rule to make an executable,

the executable must have the same name as one of the .o files

Correct: myprog: myprog.o someotherfile.o

wWon't work: myprog: somefile.o someotherfile.o

v
x

S

Appendix 2: Using GDB 3

An example program
File testintmath.c:

s

Euclid’s algorithm

Don’t be concerned

with detalls

#includf</s,1:di©./k1>

int gcd(int 1, Int j)
{ 1Int temp;

while (= 0)

{ temp =1 % J;

1= j;
J = temp;
ks
return 1;

}

int Iem(int 1,

}

}nt main(void)

{

int 1Gcd;
int 1Lcm;
1Gcd = gcd(8, 12);
iLcm = Icm(8, 12);
printf('%d %d\n",
return O;

1Gcd, 1Lcm);

int j)
{ return (1 /7 gcd(a, J)) * J;

The program is correct

But let’ s pretend it has a
runtime error in gcd()...

74

-

Using GDB

General GDB strategy:

» Execute the program to the point of interest
o Use breakpoints and stepping to do that

 Examine the values of variables at that point

")

/

Using GDB

Typical steps for using GDB:

(a) Build with —g
gcc2l7 —g testintmath.c —o testintmath

» Adds extra information to executable file that GDB uses

(b) Run Emacs, with no arguments
emacs

(c) Run GDB on executable file from within Emacs
<Esc key> x gdb <Enter key> testintmath <Enter key>
(d) Set breakpoints, as desired

break main
 GDB sets a breakpoint at the first executable line of main()

break gcd
 GDB sets a breakpoint at the first executable line of gcd()

J

/

Using GDB

Typical steps for using GDB (cont.):
(e) Run the program

run
« GDB stops at the breakpoint in main()
 Emacs opens window showing source code
« Emacs highlights line that is to be executed next

continue
» GDB stops at the breakpoint in gcd()
« Emacs highlights line that is to be executed next
(f) Step through the program, as desired
step (repeatedly)
« GDB executes the next line (repeatedly)

 Note: When next line is a call of one of your functions:
= step command steps into the function
= next command steps over the function, that is, executes the next line
without stepping into the function

"

-

Using GDB

Typical steps for using GDB (cont.):

(g) Examine variables, as desired
print i
print j
print temp
* GDB prints the value of each variable
(h) Examine the function call stack, if desired
where
» GBB prints the function call stack
« Useful for diagnosing crash in large program
(i) Exit gdb
quit
(j)) Exit Emacs
<Ctrl-x key> <Ctrl-c key>

")

-

Using GDB

GDB can do much more:

 Handle command-line arguments
run argl arg2

Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile

Print values of expressions
Break conditionally
» Etc.

"

	Building Multi-File Programs with the make Tool
	Agenda
	Multi-File Programs
	Motivation for Make (Part 1)
	Motivation for Make (Part 2)
	Partial Builds
	Partial Builds
	Wouldn’t It Be Nice If…
	Agenda
	Make Command Syntax
	Dependency Rules in Makefile
	Makefile Version 1
	Version 1 in Action
	 iClicker Question
	Makefile Guidelines
	 iClicker Question
	Makefile Guidelines
	Agenda
	Non-File Targets
	Makefile Version 2
	Version 2 in Action
	Agenda
	Macros
	Makefile Version 3
	Version 3 in Action
	Makefile Gotchas
	Making Makefiles
	Advanced: Implicit Rules
	Make Resources
	Summary
	Slide Number 31
	Goals of this Lecture
	Testing vs. Debugging
	Agenda
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Understand Error Messages
	Agenda
	Think Before Writing
	Agenda
	Look for Common Bugs
	Look for Common Bugs
	Look for Common Bugs
	Agenda
	Divide and Conquer
	Divide and Conquer
	Agenda
	Add More Internal Tests
	Agenda
	Display Output
	Display Output
	Agenda
	Use a Debugger
	The GDB Debugger
	Agenda
	Focus on Recent Changes
	Focus on Recent Changes
	Maintaining Old Versions
	Maintaining Old Versions
	Summary
	Appendix 1: Implicit Rules
	Makefile Version 4
	Version 4 in Action
	Implicit Dependencies
	Makefile Version 5
	Version 5 in Action
	Makefile Gotchas
	Appendix 2: Using GDB
	Using GDB
	Using GDB
	Using GDB
	Using GDB
	Using GDB

