
Number Systems
and

Number Representation

1

Princeton University
Computer Science 217: Introduction to Programming Systems

Q: Why do computer programmers
confuse Christmas and Halloween?

A: Because 25 Dec = 31 Oct

2

Goals of this Lecture

Help you learn (or refresh your memory) about:
• The binary, hexadecimal, and octal number systems
• Finite representation of unsigned integers
• Finite representation of signed integers
• Finite representation of rational (floating-point) numbers

Why?
• A power programmer must know number systems and data

representation to fully understand C’s primitive data types

Primitive values and
the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

3

4

The Decimal Number System
Name

• “decem” (Latin) ⇒ ten

Characteristics
• Ten symbols

• 0 1 2 3 4 5 6 7 8 9
• Positional

• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system
Why?

The Binary Number System
binary

adjective: being in a state of one of two mutually exclusive conditions such as
on or off, true or false, molten or frozen, presence or absence of a signal.
From Late Latin bīnārius (“consisting of two”).

Characteristics
• Two symbols

• 0 1
• Positional

• 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a binary digit
• Byte: (typically) 8 bits
• Nibble (or nybble): 4 bits 5

Why?

Decimal-Binary Equivalence

6

Decimal Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Decimal Binary
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111
... ...

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

7

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
= 32 + 0 + 0 + 4 + 0 + 1
= 37

Least-significant
bit (lsb)

Most-significant
bit (msb)

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

8

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
= 32 + 0 + 0 + 4 + 0 + 1
= 37

Integer

Integer

These are integers
They exist as their pure selves

no matter how we might choose
to represent them with our

fingers or toes

Integer-Binary Conversion
Integer to binary: do the reverse

• Determine largest power of 2 that’s ≤ number; write template

• Fill in template

9

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32

5
-4
1 100101B

-1
0

Integer-Binary Conversion
Integer to binary shortcut

• Repeatedly divide by 2, consider remainder

10

37 / 2 = 18 R 1
18 / 2 = 9 R 0
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Read from bottom
to top: 100101B

The Hexadecimal Number System
Name

• “hexa-” (Ancient Greek ἑξα-) ⇒ six
• “decem” (Latin) ⇒ ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F
• Positional

• A13DH ≠ 3DA1H

Computer programmers often use hexadecimal or “hex”
• In C: 0x prefix (0xA13D, etc.)

11

Why?

Decimal-Hexadecimal Equivalence

12

Decimal Hex
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F

Decimal Hex
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F

Decimal Hex
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
... ...

Integer-Hexadecimal Conversion
Hexadecimal to integer: expand using positional notation

Integer to hexadecimal: use the shortcut

13

25H = (2*161) + (5*160)
= 32 + 5
= 37

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom
to top: 25H

Binary-Hexadecimal Conversion
Observation: 161 = 24

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

Hexadecimal to binary

14

1010000100111101B
A 1 3 DH

Digit count in binary number
not a multiple of 4 ⇒
pad with zeros on left

A 1 3 DH
1010000100111101B

Discard leading zeros
from binary number if
appropriate

Is it clear why programmers
often use hexadecimal?

iClicker Question
Q: Convert binary 101010 into decimal and hex

A. 21 decimal, 1A hex

B. 42 decimal, 2A hex

C. 48 decimal, 32 hex

D. 55 decimal, 4G hex

Hint: convert to hex first

The Octal Number System
Name

• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers often use octal (so does Mickey!)
• In C: 0 prefix (01743, etc.)

16

Why?

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

17

18

Integral Types in Java vs. C

` Java C

Unsigned types char // 16 bits

unsigned char /* Note 2 */
unsigned short
unsigned (int)
unsigned long

Signed types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

signed char /* Note 2 */
(signed) short
(signed) int
(signed) long

To understand C, must consider representation of
both unsigned and signed integers

1. Not guaranteed by C, but on armlab, char = 8 bits, short = 16 bits, int = 32 bits,
long = 64 bits

2. Not guaranteed by C, but on armlab, char is unsigned

Representing Unsigned Integers
Mathematics

• Range is 0 to ∞

Computer programming
• Range limited by computer’s word size
• Word size is n bits ⇒ range is 0 to 2n – 1
• Exceed range ⇒ overflow

Typical computers today
• n = 32 or 64, so range is 0 to 232 – 1 or 264 – 1 (huge!)

Pretend computer
• n = 4, so range is 0 to 24 – 1 (15)

Hereafter, assume word size = 4
• All points generalize to word size = 64, word size = n

19

Representing Unsigned Integers
On pretend computer

20

Unsigned
Integer Rep

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Adding Unsigned Integers
Addition

Results are mod 24

21

111
7 0111B

+ 10 + 1010B
-- ----
1 0001B

1
3 0011B

+ 10 + 1010B
-- ----
13 1101B

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

How would you
detect overflow
programmatically?

Subtracting Unsigned Integers
Subtraction

Results are mod 24

22

1
3 0011B

- 10 - 1010B
-- ----
9 1001B

111
10 1010B

- 7 - 0111B
-- ----
3 0011B

Start at right column
Proceed leftward
Borrow when necessary

Beware of overflow

How would you
detect overflow
programmatically?

Shifting Unsigned Integers
Bitwise right shift (>> in C): fill on left with zeros

Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

23

10 >> 1 ⇒ 5

10 >> 2 ⇒ 2

5 << 1 ⇒ 10

3 << 2 ⇒ 12

What is the effect
arithmetically?
(No fair looking ahead)

What is the effect
arithmetically?
(No fair looking ahead)

1010B 0101B

1010B 0010B

0101B 1010B

0011B 1100B

Other Operations on Unsigned Ints
Bitwise NOT (~ in C)

• Flip each bit

Bitwise AND (& in C)
• Logical AND corresponding bits

24

~10 ⇒ 5

10 1010B
& 7 & 0111B
-- ----
2 0010B

Useful for setting
selected bits to 0

1010B 0101B

Other Operations on Unsigned Ints
Bitwise OR: (| in C)

• Logical OR corresponding bits

Bitwise exclusive OR (^ in C)
• Logical exclusive OR corresponding bits

25

10 1010B
| 1 | 0001B

-- ----
11 1011B

Useful for setting
selected bits to 1

10 1010B
^ 10 ^ 1010B

-- ----
0 0000B

x ^ x sets
all bits to 0

iClicker Question
Q: How do you set bit “n” (counting lsb=0) of

unsigned variable “u” to zero?

A. u &= (0 << n);

B. u |= (1 << n);

C. u &= ~(1 << n);

D. u |= ~(1 << n);

E. u = ~u ^ (1 << n);

Aside: Using Bitwise Ops for Arith
Can use <<, >>, and & to do some arithmetic efficiently

x * 2y == x << y
• 3*4 = 3*22 = 3<<2 ⇒ 12

x / 2y == x >> y
• 13/4 = 13/22 = 13>>2 ⇒ 3

x % 2y == x & (2y-1)
• 13%4 = 13%22 = 13&(22-1)
= 13&3 ⇒ 1

27

Fast way to multiply
by a power of 2

Fast way to divide
unsigned by power of 2

Fast way to mod
by a power of 2

13 1101B
& 3 & 0011B
-- ----
1 0001B

Many compilers will
do these transformations
automatically!

28

Aside: Example C Program
#include <stdio.h>
#include <stdlib.h>
int main(void)
{ unsigned int n;

unsigned int count = 0;
printf("Enter an unsigned integer: ");
if (scanf("%u", &n) != 1)
{ fprintf(stderr, "Error: Expect unsigned int.\n");

exit(EXIT_FAILURE);
}
while (n > 0)
{ count += (n & 1);

n = n >> 1;
}
printf("%u\n", count);
return 0;

}

What does it
write?

How could you
express this more
succinctly?

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

29

Sign-Magnitude

30

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit indicates sign

0 ⇒ positive
1 ⇒ negative

Remaining bits indicate magnitude
0101B = 101B = 5
1101B = -101B = -5

Sign-Magnitude (cont.)

31

Integer Rep
-7 1111
-6 1110
-5 1101
-4 1100
-3 1011
-2 1010
-1 1001
-0 1000
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = flip high order bit of x

neg(0101B) = 1101B
neg(1101B) = 0101B

Pros and cons
+ easy for people to understand
+ symmetric
- two representations of zero
- need different algorithms to add

signed and unsigned numbers

Ones’ Complement

32

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight -7
1010B = (1*-7)+(0*4)+(1*2)+(0*1)

= -5
0010B = (0*-7)+(0*4)+(1*2)+(0*1)

= 2

Ones’ Complement (cont.)

33

Integer Rep
-7 1000
-6 1001
-5 1010
-4 1011
-3 1100
-2 1101
-1 1110
-0 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = ~x

neg(0101B) = 1010B
neg(1010B) = 0101B

Similar pros and cons to
sign-magnitude

Two’s Complement

34

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Definition
High-order bit has weight -8
1010B = (1*-8)+(0*4)+(1*2)+(0*1)

= -6
0010B = (0*-8)+(0*4)+(1*2)+(0*1)

= 2

Two’s Complement (cont.)

35

Integer Rep
-8 1000
-7 1001
-6 1010
-5 1011
-4 1100
-3 1101
-2 1110
-1 1111
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Computing negative
neg(x) = ~x + 1
neg(x) = onescomp(x) + 1

neg(0101B) = 1010B + 1 = 1011B
neg(1011B) = 0100B + 1 = 0101B

Pros and cons
- not symmetric (“extra” negative number)
+ one representation of zero
+ same algorithm adds unsigned numbers

or signed numbers

Two’s Complement (cont.)

Almost all computers today use two’s complement
to represent signed integers

• Arithmetic is easy!

Hereafter, assume two’s complement
36

Is it after 1980?
OK, then we’re surely

two’s complement

Adding Signed Integers

37

11
3 0011B

+ 3 + 0011B
-- ----
6 0110B

111
7 0111B

+ 1 + 0001B
-- ----
-8 1000B

pos + pos pos + pos (overflow)

1111
3 0011B

+ -1 + 1111B
-- ----
2 0010B

pos + neg

11
-3 1101B

+ -2 + 1110B
-- ----
-5 1011B

neg + neg
1 1

-6 1010B
+ -5 + 1011B
-- ----
5 0101B

neg + neg (overflow)

How would you
detect overflow
programmatically?

Subtracting Signed Integers

38

11
3 0011B

- 4 - 0100B
-- ----
-1 1111B

3 0011B
+ -4 + 1100B
-- ----
-1 1111B

-5 1011B
- 2 - 0010B
-- ----
-7 1001B

111
-5 1011

+ -2 + 1110
-- ----
-7 1001

Perform subtraction
with borrows

Compute two’s comp
and addor

Negating Signed Ints: Math
Question: Why does two’s comp arithmetic work?

Answer: [–b] mod 24 = [twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info

39

[–b] mod 24

= [24 – b] mod 24

= [24 – 1 - b + 1] mod 24

= [(24 – 1 - b) + 1] mod 24

= [onescomp(b) + 1] mod 24

= [twoscomp(b)] mod 24

Subtracting Signed Ints: Math

And so:
[a – b] mod 24 = [a + twoscomp(b)] mod 24

See Bryant & O’Hallaron book for much more info
40

[a – b] mod 24

= [a + 24 – b] mod 24

= [a + 24 – 1 – b + 1] mod 24

= [a + (24 - 1 – b) + 1] mod 24

= [a + onescomp(b) + 1] mod 24

= [a + twoscomp(b)] mod 24

Shifting Signed Integers
Bitwise left shift (<< in C): fill on right with zeros

Results are mod 24

Bitwise right shift: fill on left with ???

41

3 << 1 ⇒ 6

-3 << 1 ⇒ -6

What is the effect
arithmetically?

0011B 0110B

1101B 1010B

Shifting Signed Integers (cont.)
Bitwise arithmetic right shift: fill on left with sign bit

Bitwise logical right shift: fill on left with zeros

In C, right shift (>>) could be logical or arithmetic
• Not specified by standard (happens to be arithmetic on armlab)
• Best to avoid shifting signed integers 42

6 >> 1 => 3

-6 >> 1 => 5

What is the effect
arithmetically???

0110B 0011B

1010B 0101B

6 >> 1 ⇒ 3

-6 >> 1 ⇒ -3

What is the effect
arithmetically?

0110B 0011B

1010B 1101B

Other Operations on Signed Ints
Bitwise NOT (~ in C)

• Same as with unsigned ints

Bitwise AND (& in C)
• Same as with unsigned ints

Bitwise OR: (| in C)
• Same as with unsigned ints

Bitwise exclusive OR (^ in C)
• Same as with unsigned ints

Best to avoid with signed integers

43

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

44

Rational Numbers

Mathematics
• A rational number is one that can be expressed

as the ratio of two integers
• Unbounded range and precision

Computer science
• Finite range and precision
• Approximate using floating point number

45

Floating Point Numbers
Like scientific notation: e.g., c is

2.99792458 × 108 m/s

This has the form
(multiplier) × (base)(power)

In the computer,
• Multiplier is called mantissa
• Base is almost always 2
• Power is called exponent

IEEE Floating Point Representation
Common finite representation: IEEE floating point

• More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 8 bits: exponent + 127
• 23 bits: binary fraction of the form 1.bbbbbbbbbbbbbbbbbbbbbbb

Using 64 bits (type double in C):
• 1 bit: sign (0⇒positive, 1⇒negative)
• 11 bits: exponent + 1023
• 52 bits: binary fraction of the form

1.bb

47

Floating Point Example

Sign (1 bit):
• 1 ⇒ negative

Exponent (8 bits):
• 10000011B = 131
• 131 – 127 = 4

Mantissa (23 bits):
• 1.10110110000000000000000B
• 1 + (1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+

(1*2-6)+(1*2-7) = 1.7109375

Number:
• -1.7109375 * 24 = -27.375

48

11000001110110110000000000000000

32-bit representation

When was floating-point invented?

mantissa
noun
decimal part of a logarithm, 1865, from Latin mantisa “a worthless
addition, makeweight,” perhaps a Gaulish word introduced into Latin via
Etruscan (cf. Old Irish meit, Welsh maint "size").

Answer: long before computers!

Floating Point Consequences

“Machine epsilon”: smallest positive number you can
add to 1.0 and get something other than 1.0

For float: ε ≈ 10−7

• No such number as 1.000000001
• Rule of thumb: “almost 7 digits of precision”

For double: ε ≈ 2 × 10−16

• Rule of thumb: “not quite 16 digits of precision”

These are all relative numbers

Floating Point Consequences, cont
Just as decimal number system can
represent only some rational
numbers with finite digit count…

• Example: 1/3 cannot be represented

Binary number system can
represent only some rational
numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of roundoff error
• Error resulting from inexact

representation
• Can accumulate
• Be careful when comparing two floating-point numbers for equality

51

Decimal Rational
Approx Value
.3 3/10
.33 33/100
.333 333/1000
...

Binary Rational
Approx Value
0.0 0/2
0.01 1/4
0.010 2/8
0.0011 3/16
0.00110 6/32
0.001101 13/64
0.0011010 26/128
0.00110011 51/256
...

iClicker Question
Q: What does the following code print?

A. All good!

B. Yikes!

C. Code crashes

D. Code enters an infinite loop

double sum = 0.0;
int i;
for (i = 0; i < 10; i++)

sum += 0.1;
if (sum == 1.0)

printf("All good!\n");
else

printf("Yikes!\n");

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Essential for proper understanding of
• C primitive data types
• Assembly language
• Machine language

53

	Number Systems�and�Number Representation
	Goals of this Lecture	
	Agenda
	The Decimal Number System
	The Binary Number System
	Decimal-Binary Equivalence
	Decimal-Binary Conversion
	Decimal-Binary Conversion
	Integer-Binary Conversion
	Integer-Binary Conversion
	The Hexadecimal Number System
	Decimal-Hexadecimal Equivalence
	Integer-Hexadecimal Conversion
	Binary-Hexadecimal Conversion
	 iClicker Question
	The Octal Number System
	Agenda
	Integral Types in Java vs. C
	Representing Unsigned Integers
	Representing Unsigned Integers
	Adding Unsigned Integers
	Subtracting Unsigned Integers
	Shifting Unsigned Integers
	Other Operations on Unsigned Ints
	Other Operations on Unsigned Ints
	 iClicker Question
	Aside: Using Bitwise Ops for Arith
	Aside: Example C Program
	Agenda
	Sign-Magnitude
	Sign-Magnitude (cont.)
	Ones’ Complement
	Ones’ Complement (cont.)
	Two’s Complement
	Two’s Complement (cont.)
	Two’s Complement (cont.)
	Adding Signed Integers
	Subtracting Signed Integers
	Negating Signed Ints: Math
	Subtracting Signed Ints: Math
	Shifting Signed Integers
	Shifting Signed Integers (cont.)
	Other Operations on Signed Ints
	Agenda
	Rational Numbers
	Floating Point Numbers
	IEEE Floating Point Representation
	Floating Point Example
	When was floating-point invented?
	Floating Point Consequences
	Floating Point Consequences, cont
	 iClicker Question
	Summary

