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Abstract

In this paper, we analyze the effect of two text encod-
ing methods on a VQA classifier model. We compare a
naı̈ve bag-of-words encoding with a semantically meaning-
ful word2vec encoding. We evaluate performance through
ablation studies, manipulation of text and image inputs, and
visualization of textual and visual attention. We find that
the word2vec-based model learns to utilize both textual and
visual information, whereas the bag-of-words-based model
learns to rely more on textual input. Our analysis methods
and results provide insight into how VQA models learn de-
pending on the types of inputs they receive during training.

1. Introduction

Visual question answering (VQA) is the task of answer-
ing a question about a given image. Many baseline VQA
methods employ the following general approach:

1. Extract text features from the input question.

2. Extract visual features from the input image.

3. Train a classifier that takes text features + visual fea-
tures as input and outputs a probability distribution
across answers.

Surprisingly, a naı̈ve bag-of-words text input achieves
impressive performance on the VQA dataset [1], outper-
forming more complicated text encoding methods [9]. We
propose that using word2vec as the text input should im-
prove performance by incorporating the semantic meaning
of the question.

Our work compares a bag-of-words encoding and
word2vec encoding for VQA performance. In doing so, we
provide insights into why a bag-of-words model performs
so well and how the text encoding method impacts what the
model learns.

2. Related Work
iBOWIMG [9] provides a good baseline for VQA. When

compared with nine other VQA methods, including an
LSTM-based embedding, iBOWIMG outperforms most on
both open-ended and multiple-choice questions. Our work
aims to understand why a model like iBOWIMG performs
so well.

iBOWIMG uses a learned embedding layer, which does
not take advantage of NLP word embedding methods, such
as word2vec [4] and GloVe [5]. Our work suggests using
word2vec for text encoding and explains why and how this
impacts performance. Research in NLP has compared the
effectiveness of embedding methods for encoding semantic
meaning, but we provide an in-depth analysis of the effect
of text encoding methods on VQA specifically. Our analy-
sis is different from evaluating the encoding method itself
because our goal is to understand how the encoding method
influences both semantic and visual understanding.

Since iBOWIMG, state-of-the-art VQA models have
emerged, including those using bi-directional LSTMs [3]
and neural module networks [2]. However, we believe there
is still work to be done to fully understand and explain the
baseline model.

3. Project Overview
3.1. Implementation

Classifier architecture. We borrow from the classifier
architecture used in iBOWIMG [9]. The input to the net-
work is a concatenation of the word feature and image fea-
ture. The input goes through a fully-connected layer and
then a softmax layer, as shown in Figs. 1 and 2. The output
vector size is the number of words in the answer vocabu-
lary, and the word corresponding to the most probable class
is the predicted answer.

The input image feature is the 4096-dimensional feature
vector extracted from the fc2 layer of a VGG16 net [7]
trained on ImageNet [6]. The textual features are described
next.

Bag-of-words. The bag-of-words (BOW) encoding of a
question is the sum of the one-hot encoding vector of each
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word in the question. The size of the encoding vector is the
number of words in the vocabulary. Fig. 1 is a diagram of
the BOW-based classifier.

Figure 1: BOW classifier model

Word2vec. The word2vec (W2V) embedding of a ques-
tion is created by using a two-layer network with a 300-
dimensional hidden layer that becomes the encoding of the
word. We use a word2vec embedding matrix pre-trained on
the Google News dataset. To form the question feature, we
get the word2vec embedding of each word in the question
and sum the embeddings. Fig. 2 is a diagram of the W2V-
based classifier.

Figure 2: W2V classifier model

Whereas BOW is a naı̈ve encoding, W2V encodes se-
mantic relationships and analogies between words: words
that are closer in the 300-dimensional space are more se-
mantically related, and words that are analogous have sim-
ilar distance vectors. Fig. 3 provides a visualization of the
relationships that W2V encodes in the VQA vocabulary.

(a) Full space (b) Zoom-in

Figure 3: Projection of 300-d word2vec space in 2-d, us-
ing words from the VQA dataset. Words that are similar in
semantic meaning are grouped together.

3.2. Goals

Our goal is to compare two different text encoding meth-
ods on a baseline VQA classifier. More than simply com-
paring accuracy, we aim to understand how and what the
model learns.

3.3. Evaluation Methods

We train both models on the VQA train2014 set and eval-
uate on the val2014 set [1]. We use three general evaluation
approaches:

1. Ablation studies to understand how the model depends
on each input type.

2. Manipulating text and visual input to understand how
the model responds to altered inputs.

3. Extracting textual and visual attention to understand
which input features activate the predicted answer.

3.4. Insights

We found that word2vec teaches the VQA model to bet-
ter integrate textual and visual input. We show this in our
ablation studies (Section 4) and manipulations of the inputs
(Section 5).

We also propose novel methods to evaluate VQA mod-
els: semantic precision (Section 4) and a variant of class
activation mapping (Section 6).

4. Measuring Accuracy and Semantic Preci-
sion

In this section, we compare performance using top-1 ac-
curacy and investigate the impact of removing either the vi-
sual or textual input. We also propose a metric called “se-
mantic precision.”

4.1. Top-1 Accuracy

We evaluate both models on val2014 using top-1 accu-
racy. The W2V+IMG classifier achieves an overall accu-
racy of 35.2% compared with 33.7% for BOW. W2V does
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better on most types of questions answered by a noun (i.e.,
“what” questions). In general, BOW recognizes “yes/no”
questions better than W2V. Table 1 provides accuracy com-
parisons for the overall dataset and for specific question
types.

Question Type BOW W2V

Overall 33.7 35.2
“What is the” 0.1 30.2
“What are the” 0.0 10.9
“What is this” 13.5 0.0
“What animal is” 71.8 0.0
“What kind of” 6.3 14.9
“What” 1.4 6.4
“Why” 0.0 4.8

Table 1: Top-1 accuracy (%) on val2014

4.2. Ablation Studies

The following ablation studies remove text or visual in-
put and measure the resulting decrease in performance.

Text only. We perform text-only ablation studies by re-
moving the visual input (replacing the 4096-d image fea-
ture vector with all zeros). Despite the lack of visual infor-
mation, both BOW and W2V still perform relatively well,
achieving 32.5% and 31.5%, respectively. This indicates
that the text input provides the most necessary information.
This shows that questions in the VQA dataset contain sig-
nificant bias and are easy to learn based only on language
priors. Both the BOW and W2V models learn to recognize
question types extremely well, and in Section 5 we demon-
strate that changing the input question type influences the
type of answer that the networks predict. For example,
changing “What does the label on the bottle mean?” to
“Does the label on the bottle mean?” causes both networks
to change their answer from a noun to “yes/no.” Further-
more, the dataset contains a significant portion of “yes/no”
questions (val2014 contains about 22.9% “yes” questions
and 15.1% “no” questions), making it easy to guess the cor-
rect answer for this type of question.

Image only. For image-only analysis, we remove the
text input by replacing the text feature vector with all ze-
ros. As expected, accuracy declines significantly for both
networks: BOW accuracy drops from 33.3% to 22.3%, and
W2V accuracy drops from 35.0% to 19.1%. Interestingly,
W2V suffers significantly more than BOW without text in-
put.

Discussion. Our ablation studies suggest that the W2V-
based classifier learns to use both textual and visual infor-
mation, whereas the BOW-based classifier depends over-
whelmingly on the text input. For both text-only and image-
only, BOW outperforms W2V. However, when given both

types of input, W2V achieves 35% accuracy compared
to 33.3% by BOW. For text-only, BOW accuracy is high
(32.5%). The BOW classifier depends mostly on the text in-
put to make a prediction, whereas the W2V classifier learns
to use both types of input.

When we looked more closely at the BOW predictions
for image-only, we saw that BOW guessed “yes” 95.3% of
the time and “no” 3.8% of the time. Therefore, given no
information about the question type, BOW assumes that it
is a “yes/no” question and guesses “yes.” W2V, on the other
hand, guessed “yes” 75.1% of the time and “no” 9.4% of
the time when given no text. This suggests that the BOW
classifier learns and memorizes the dataset bias, whereas
W2V learns to utilize both its given inputs.

Model Accuracy

BOW IMG+TXT 33.3
BOW TXT 32.5
BOW IMG 22.3
W2V IMG+TXT 35.0
W2V TXT 31.5
W2V IMG 19.1

Table 2: Ablation studies, measured by top-1 accuracy (%)
on val2014

4.3. Semantic Precision

Model Semantic Precision

BOW IMG+TXT 57.6
BOW TXT 61.8
BOW IMG 39.1
W2V IMG+TXT 60.1
W2V TXT 61.0
W2V IMG 31.7

Table 3: Semantic precision (%), the average semantic
similarity between predicted answer and ground truth, on
val2014

We propose another metric of VQA performance: se-
mantic precision. This metric quantifies the semantic close-
ness between predictions and ground-truth answers. Se-
mantic precision offers an alternative to top-1 accuracy per-
formance. It is a more lenient metric because it rewards a
method for correctly understanding the semantic meaning
of a question even though the answer is not technically cor-
rect. Suppose that in response to the question “How many
apples are there?” Method 1 answers “2” and Method 2
answers “on the table,” and the true answer is “3.” By accu-
racy, Method 1 suffers the exact same amount as Method 2,
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but by semantic precision, Method 1 performs much better.
To calculate semantic precision, we use the pre-trained

W2V embeddings and measure the distance between the
normalized embedding vectors of two words. We rate the
semantic similarity of these vectors between 0.0 and 1.0.
For each predicted answer, we calculate the similarity be-
tween the prediction and ground-truth answer and deter-
mine the average semantic similarity score for both BOW
and W2V. As expected, the W2V model outperforms BOW
in semantic precision due to the semantic information en-
coded in W2V.

5. Altering Semantic and Visual Input
Next, we examine which parts of the semantic and visual

inputs influence a model’s prediction. The semantic impor-
tance of each question word can be examined by succes-
sively removing various key words from the question and
observing how the answer changes in response. The im-
portance of each object in an image can be examined by
zeroing out the portion of the image that contains that ob-
ject, extracting the VGG-16 feature vector of the new im-
age, and evaluating how the network changes its prediction.
The results of semantic and visual alterations to three dif-
ferent question-image pairs are shown and described below.

(a) Original image (b) Altered image

Figure 4: Images associated with the question “How many
fruits and veggies are there?” and answer “lot”

Example 1. We first examined the image in Fig. 4(a) and
corresponding question “How many fruits and veggies are
there?” (answer: “lot”). BOW predicted “4,” while W2V
predicted “hundreds,” which is closer to the correct answer.
In both cases, the network knew to respond with a quantity.

We then altered the image by zeroing out the main focus
of the image (i.e., the part with the fruits at the bottom). As a
result, BOW predicted “5,” while W2V predicted “contest.”
Interestingly, BOW still predicted a number, but W2V no
longer predicted a quantity. This suggests that changing the
image affects the W2V model more than it affects the BOW
model.

Altering the question to remove key words also changed
the predicted answers. When we removed words to form the

questions “many fruits and vegetables are there” and “fruits
and vegetables are there,” both BOW and W2V predicted
“yes.” Note that “yes” is technically correct for these al-
tered questions because word order is not encoded in either
model.

When we removed “fruits and vegetables” from the sen-
tence to form “how many are there,” BOW still predicted
the “4,” whereas W2V predicted “2.” This shows how im-
portant the question words are to both BOW and W2V. Both
methods depend strongly on the words indicating the type
of question.

However, BOW depends on the question type more than
W2V does. When phrases like “many” and “are there” were
removed to form the questions “how fruits and vegetables
are there” and “how many fruits and vegetables,” W2V pre-
dicted “oranges” for both questions, indicating that it was
concentrating on the “fruits and vegetables” phrase and con-
necting it with the oranges found in the image. This demon-
strates that when the question type is ambiguous, W2V re-
verts to using visual information. Meanwhile, BOW did not
revert to using visual information. BOW predicted “yes” for
the question “how fruits and vegetables are there” and “4”
for the question “how many fruits and veggies.” This shows
that BOW was not concentrating on “fruits and veggies”
in the original question, but was instead trying to catego-
rize the question into a yes/no or quantity type of question.
For the question “how fruits and veggies are there,” BOW
seems to interpret it as the question “are there fruits and
veggies” so answers “yes.” Note that both the words “how”
and “many” are necessary for BOW to consider the question
a quantity question (we further demonstrate this in Section
6).

Example 2. We next examined the image in Fig. 5(a)
and the question “What time does the clock read?” (answer:
“11:55”). BOW predicted “cloudy,” while W2V predicted
“4:00.” The W2V prediction is very close to ground truth.
It seems that W2V associated the words “time” and “clock,”
as well as the image of the clock, with the answer “4:00.”

When we altered the image to hide the clock tower, BOW
predicted “4:25” while W2V predicted “bridge.” This time,
BOW recognized the type of question, while W2V didn’t.
Interestingly, BOW recognized the question type only when
the object in the question was hidden, which suggests that
BOW gives more importance to the question words than to
the image features. Conversely, W2V clearly gives more
importance to the image because it predicted “bridge” when
the tower was hidden. For W2V, seeing the clock tower was
essential to recognizing that the question was asking for a
specific time, but without the clock tower, W2V moved its
attention to the next most salient object in the image, the
bridge.

We then removed the bridge. As a result, BOW predicted
“horse” while W2V predicted “big ben.” Neither the BOW
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(a) Original image (b) Image without clock

(c) Image without bridge

Figure 5: Images associated with the question “What time
does the clock read?” and answer “11:55”

nor the W2V network understood that the question was ask-
ing for a time. However, the W2V model clearly has a better
understanding of the image because it correctly recognizes
Big Ben.

Removing various words in the question provided some
insight as to how the text influences the predicted answer.
Similar to the above example, when we removed the first
word to form the question “time does the clock read,” both
W2V and BOW answered “yes.” Their prediction is tech-
nically correct for the altered question. Clearly, both W2V
and BOW pay careful attention to the type of question. We
also found that “read” does not seem to be an important
word, as removing the word to make the question “what
time does the clock” did not change either model’s answer.
Surprisingly, removing any of the middle words in the ques-
tion (“time,” “does,” “the,” “clock”) caused both W2V and
BOW to predict “cloudy.” This indicates that these middle
words are essential in making the W2V model understand
that the question is asking for a time. In the absence of
information about question type, both models reverted to
simply recognizing the most salient part of the image (ap-
parently the clouds). Perhaps the simplicity of the BOW-
based model allows it to recognize only the most frequent
question types, making it miss rare questions types such as
time.

Example 3. We next examined the image in Fig. 6(a)
and question “What is over the woman’s right arm?” (an-
swer: “bags”). Both models predicted “bag,” which is ex-
tremely close to correct.

(a) Original image (b) Image without bag

(c) Image without umbrella

Figure 6: Images associated with the question “What is over
the woman’s right arm?” and answer “bags”

We first altered the image to remove the bag. As a result,
BOW predicted “black” and W2V predicted “left.” This
suggests that both networks depend on the image content
to some extent. Without being able to see the bag, the
W2V model simply predicted a word that was similar to
the question words. BOW, however, successfully focused
its attention on the right side of the woman and saw the
black square. The BOW prediction reminds us that zeroing
out parts of the image may not be the best way of removing
objects, as the zeros indicate the color black, not a lack of
information.

Next we altered the image to remove the umbrella. In
response, BOW predicted “bag” and W2V predicted “left.”
One explanation is that the BOW model knows only to look
near the woman’s right arm because it pays more attention
to the question words than W2V does. W2V does not seem
to understand what the woman’s right arm means and sim-
ply predicts some word that seems similar to the question
words. This is supported by examining which words influ-
ence the answer more (using the textual attention method
outlined in Section 6). When we examined the textual at-
tention of the two networks, we saw that the word that in-
fluenced the answer most for the BOW model was “item.”
The words that influenced the answer most for the W2V
model were “side,” “hand,” “arm,” and “lefthand.” There-
fore, BOW seems to pay more attention to the “what” part
of the question, whereas W2V seems to pay attention to the
more visually meaningful part of the question (“right arm”).

We also tried removing some key words from the ques-
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tion. When the altered question was “is over the woman’s
right arm,” both methods predicted “yes” with high con-
fidence, as expected. We also tried removing “over,”
“woman’s,” and “woman’s right arm” to make the following
three questions: “what is the woman’s right arm,” “what is
over the right arm,” and “what is over.” For all three of these
questions, BOW still predicted “bag.” On the other hand,
W2V predicted “umbrella.” This, too, suggests that “what”
is the key word for BOW, since changing any word other
than “what” did not change the predicted answer. W2V,
on the other hand, perceives other objects such as the um-
brella, but seems to use the phrases “over” and “woman’s
right arm” to know where in the image to look.

To summarize these evaluations, we found that both
the image and question influence both networks’ answers.
However, BOW pays more attention to the question words,
specifically those that indicate the question type, while
the W2V method generally relies more on the image fea-
tures. Interestingly, even though BOW concentrates more
on the question type, it seems that when the question type is
“what,” the image features determine the answer. For exam-
ple, in Examples 2 and 3, both of which contained the word
“what” in their questions, BOW’s predictions were based
on the image. This suggests that the BOW model modu-
lates how much it should concentrate on the image based
on the question type. Meanwhile, W2V also pays attention
to the type of question, but it uses the image information to
determine what other words to concentrate on. As shown in
the results for Examples 1 and 2, when parts of the image
related to specific question words were hidden, the answer
given by the W2V model was gibberish. In Example 3, the
W2V model perceived all the objects in the image (woman,
bag, umbrella, etc.), but when the indicative phrases “over”
or “woman’s right arm” were removed, it chose an incorrect
object. While the BOW model chooses which parts of the
image to focus on based on the question type, W2V takes
in the whole image as well as the question type and tries to
match the rest of the words in the question accordingly.

6. Extracting Visual and Textual Attention
Inspired by the Class Activation Mapping (CAM) [8]

method, we propose a method of extracting both visual
and textual attention in the network. Traditional CAM
works by taking the activated word (the argmax of the soft-
max output) and backpropagating it through the network
[8]. For our VQA classifier, we also first get the activated
word and focus on the weights tied to the activated word
in the fully connected layer (the “activated weights”). For
example, for the W2V-based classifier, the input size has
4096+300 = 4396 dimensions, so there are 4396 activated
weights. Of these weights, the first 300 are tied to the word
input, and the last 4096 are tied to the visual input, as shown
in Fig. 7(b).

6.1. Textual Attention

The goal of textual attention is to identify the “key word”
that influences the network output. For example, if the pre-
dicted answer is “yes,” we want to know which input word
most significantly caused that output.

To extract the key word, we start with the activated class
and extract the weights tied to the activated word to focus
on the activated weights associated with the text input. For
W2V, we take the first 300 activated weights, and for BOW,
we take the first 5535 weights (there are 5535 question vo-
cabulary words in the training set).

For BOW, we take the argmax of the 5535-d vector of
activated text weights to identify the index of the most in-
fluential word in the input. Since the input is just a one-hot
bag of words, the argmax of the activated text weights corre-
sponds directly with the key word’s index in the vocabulary.

For W2V, it is trickier to identify the key word, since
the text input is a 300-d vector in the word2vec embed-
ding space. We propose the following method: we treat the
activated text weights, which themselves constitute a 300-
dimensional vector, as a vector in the word2vec embedding
space. We normalize the vector of activated text weights
and calculate its 10 closest words. The intuition is that the
weight on each of the 300 dimensions corresponds to the
importance of that dimension on the network’s answer, and
since each dimension is in the word2vec semantic space, we
can parse the semantic “meaning” of the weights, treating
the weight vector as a word itself. Amazingly, this method
produces highly interpretable results (Figs. 9 and 10).

6.2. Visual Attention

To examine visual attention, we extract the activated
weights associated with the visual input. We then take the
argmax of these weights to get the “activated dimension” of
the 4096-d image feature vector. Starting from the activated
dimension, we backpropagate through VGG16 to the conv5
output. The conv5 layer uses 512 filters of size 7 × 7, and
we take the filter with the largest weight (the “activated fil-
ter”). The activated filter is the filter with the most impact
on the prediction of the VQA classifier. It is visualized as a
7× 7 heatmap over the image. Fig. 8 provides an example.

Our visual attention mapping method currently produces
rather coarse results. Further improvements can be made by
averaging over the 512 filters (instead of taking the argmax)
to generate a more detailed heatmap. We can do the same
for the visual weights that influence the activated class in
the VQA classifier; that is, instead of taking the activated
dimension of the 4096-d feature vector, we can average over
all 4096 dimensions and backpropagate through VGG16.
While there are improvements to be made, we believe our
visual attention mapping method provides valuable insight
into the visual attention of the network.
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(a) BOW activating word

(b) W2V activating word

Figure 7: Visualization of our class activation mapping
method to identify activating input words.

BOW. Most answers predicted by the BOW-based clas-
sifier are related to their “key words.” For example, when-
ever BOW predicts “yes” as the answer, the activated in-
put word is “there.” This is because the word “there” oc-
curs frequently in “yes/no” questions, such as those of the
form “Is there...” Partially as a result of dataset bias, the
BOW-based classifier learns to more probably predict “yes”
if it sees the word “there” in the input question. Whenever

(a) Image (b) BOW activated filter

(c) W2V activated filter

Figure 8: Activated filters for input image and question “Is
this a Spanish town?” Both models predict the correct an-
swer (“yes”).

BOW predicts a number, such as “3” or “2,” the activated
class maps back to the word “many.” This is because most
questions that are answered by a number contain the phrase
“how many.” This supports our insight that the BOW-based
model heavily relies on the type of question.

W2V. Extracting the activated word for the W2V-based
model yields more mixed results. When the classifier pre-
dicts “yes,” the activated word embedding is semantically
close to random words in the word2vec dictionary, such as
“Splendid Friend.” This could be due to the noise in the
word2vec dictionary itself, since it was trained on the large
Google News dataset. Another explanation is that the W2V-
based model learns a more robust representation of the word
“yes,” where “yes” could be the answer to a more diverse set
of questions than in the BOW method’s understanding of
the world. This would mean that in order to answer “yes,”
W2V requires more information (perhaps visual features)
than just one word.

Interestingly, for other answers, the activated word em-
bedding closely resembles the predicted answer. For exam-
ple, when the W2V-based model predicts “2” or “3,” the ac-
tivated word embedding’s 10 closest words include “many,”
“number,” and “how.” For the answer “USA,” the activated
word embedding is semantically closest to “country” and
“flag.” For the answer “beer,” the activated word embed-
ding is close to “drinking,” “drink,” and “beverage.” Figs. 9
and 10 provide more examples.
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(a) (b)

(c)

Figure 9: Examples of textual activation mapping. For each
example, we provide the method’s prediction and the acti-
vating word.

(a) (b)

(c)

Figure 10: More examples of textual activation mapping.

7. Conclusion
Our evaluations on the BOW-based and W2V-based clas-

sifiers confirm that semantically meaningful embedding
vectors lead to higher accuracy. Our key insights, however,
lie not in the marginal improvement in top-1 accuracy, but
in an understanding of how the model behaves when using
different text encoding methods. The W2V model learns to
utilize both textual and visual inputs, recognizing most of
the image features and then using textual information to in-
form its predictions. The BOW model, on the other hand,
depends primarily on the question.

While the encoding method is a key difference between
the W2V and BOW models, there are other factors to con-
sider. The W2V embeddings are pre-trained on a much
larger dataset, giving the W2V method an advantage due to
transfer learning. Furthermore, the VQA dataset contains
significant bias and is not the most robust dataset for visual
question answering.

Though our analysis is based on a simple model, we be-
lieve that our insights provide ideas for the development and
evaluation of future state-of-the-art VQA models.
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