
Project report - COS 598B
Physical adversarial examples for semantic image segmentation

Vikash Sehwag
Princeton University

vvikash@princeton.edu

Abstract

In this project, we work on the generation of physical ad-
versarial examples for semantic image segmentation. Ad-
versarial examples generation has gained a wide interest
due to its success for most of the state of deep learning
models. However, much of this work focuses on image clas-
sification in limited settings. In this project, we extended
these methods to semantic segmentation with further relax-
ing some constrained to resemble real word attack models.

Initially, we provide a brief background on adversarial
examples and further discuss the necessity of generating
physical adversarial examples. In next section, we discuss
how to generate robust adversarial examples and present
the results with state of the art networks. Next, we discuss
the limitation of the adversarial attacks for semantic seg-
mentation models and present insight to this behavior by
studying the effective receptive field of these networks. Fi-
nally, we present some examples of physical adversarial ex-
amples for these networks and discuss future direction given
the limited adversarial success in this attack model.

1. Introduction

Recent advances in computer vision using deep learning
methods have led to wide adoption of the neural network
based approaches. However, the non-convex nature of neu-
ral network optimization poses a difficulty in understating
the failure cases of these systems. One of the prominent ex-
amples from this class is adversarial examples. Given a im-
ages which will be classified correctly by a neural network,
it is possible to add a very small amount of perturbation (ε)
such that the resulted image will be misclassifed.

Given a neural network with network parameters (θ)
and input(x), the output class for x can be written as C(x).
Therefore an adversarial example (x′) for given input (x)
can be define as,

x′ = x+ ε s.t. C(x′) 6= C(x), ||ε||p ≤ εmax

(a) Payphone (Clean) (b) Cash-machine (Adv.)

(c) Drum (Clean) (d) Sleeping bag (Adv.)

(e) Vase (Clean) (f) Mop (Adv.)

Figure 1: Clean and adversarial (Adv.) image for a resnet-
50 network trained on Imagenet dataset. The adversarial
image is obtained by adding a small perturbation to the
clean image.

However, due to non-convexity of C(x) a closed form so-
lution of above optimization problem is highly difficult to
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obtain. Current state of the art attack algorithm for gen-
erating adversarial examples uses gradient based methods.
Given a loss function L(x, θ, y) (x-input, y-target label, θ-
model parameters), it simply add the perturbation such that
this loss will decrease. As decrease in loss function (eg.,
cross-entropy loss in classification) depicts that the model
is predicting target class instead of the true one.

1.1. Single step vs iterative attack algorithms

In single step attack algorithm it simply requires calcu-
lating a single gradient of loss function. The fast gradient
sign methods (FGSM) which is a single step attack methods
generates adversarial examples using following equation,

x′ = x+ ε ∗ sign(∇L(x, θ, y))
. In iterative gradient attacks, we add a small perturbation
(≈ epsmax

no. of iterations ) to input in each iteration. As due to
highly non-convex nature of loss function, iterative attacks
are more likely to find the local maximum, thus perform
much better. We refer the reader to [6] for a detailed
discussion of these attack methods. In this work we will
primarily use FGSM projected gradient descent [8] with
iterative gradient attacks.

Fig. 1 demonstrate this effect where the adversarial
examples are generated using Iterative gradient steps [8]
with constraint ||εmax||∞ ≤ 16 (while pixel values ranges
0. . .255). Though exact confidence not reported, it is
generally greater than 95% for all adversarial examples.
Note that adversarial examples can be easily generated with
perturbation even much smaller perturbations. However,
as the defense methods ([12, 8]) are also improving along
with (work well mostly with small perturbations only), we
consider ε =16.0 for these examples. A detailed discussion
of these methods for image classification can be found in
[7, 6].

1.2. Targeted vs Non-targeted attacks

It can be observed that the adversarial examples gener-
ated in Fig.1 has output class a bit similar in some features
to the original class. For examples, the adversarial exam-
ple for payphone is a cash-machine which at least got some
similar features to the pay-phone. This method is termed
non-directed attacks, where we simply decrease the confi-
dence of loss function in the correct class. This problem
arises poor nature of the optimization problem for gener-
ating these non-targeted adversarial examples. As the at-
tack algorithms use local gradients, which generally leads
to switching the output class to a visually similar one. The
solution is to either improve optimization algorithm to find
the global maximum in the constrained space for perturba-
tion or update the optimization problem. The second solu-

(a) goldfish (b) kite

(c) bakery (d) sea snake

Figure 2: Targeted adversarial examples with corresponding
predicted labels from a resnet-50 network. The target label
is selected randomly from the imagnet data labels.

tion which is the easier to implement is termed as targeted
attack algorithms. Fig. 2 shows the targeted adversarial ex-
amples in a similar adversarial model as previous (fig. 1).
These can be simply obtained by minimizing the loss func-
tion for making the targeted class as the predicted class.

In this work we move forward from image classifica-
tion and specifically focus on semantic image segmentation.
Similar to classification, the adversary can corrupt the out-
put segmentation by adding a small adversarial perturba-
tion. Fig. 3 shows this effect where the adversary has con-
trol over the optimization problem, thus output segmenta-
tion of adversarial examples. Depending on the formulation
of optimization problem i.e, the target label y in targetted at-
tacks, the adversary can corrupt all output segmentation of
all/selected pixels randomly or to a selected label.

1.3. Security model

However, for all these attacks we have assumed that the
adversary has access to the neural network, which allows
the adversary to calculate gradient and further generate adv.
examples. This security model is called open box attack
model. Given, the extent of security model it may not be
possible for the adversary to access this information. An
attack model where the adversary has access to neural net-
work inputs and output prediction only is termed as black
box attack model. It has been generally observed that ad-
versarial examples generated for one model tend to be mis-

2



Figure 3: Output segmentation of clean and adversarial im-
ages. In left the original image and output segmentation is
placed. In right the a adversarial images is showed with cor-
responding output segmentation. By adding different per-
turbation in the input image, adversary can easily influence
output of selected pixels in a selected way.

classified by another model also. Adversarial examples re-
ported in Fig. 2 are also adversarial for a vgg-16 network
where they are mostly classified as cash-machine or pay-
phone with a very low confidence. We evaluate the transfer-
ability of adversarial examples for segmentation networks
in section 3.2.

2. Experimental setup
In this work we primarily work with Cityscape dataset

[4] for semantic segmentation. We consider Pspnet [14]
and DeeplabV3+ [3] which are state of the art approaches,
for segmentation. We use the pre-trained model re-
leased in the official version, with tensorflow and keras
as the learning framework (we obtain TF/keras compatible
models/conversion-tools from 1,2).

To generate adversarial examples we use projected gra-
dient descent with 100 iterations with Adam optimizer. For
Cityscape, we consider 20 random images from the test set
(fig. 15) and primarily test adversarial robustness with them.
The primary reason to limit to 20 images is significant time
overhead of generating adversarial example for each image.
Further, if not specified, it should be assumed that the re-
ported results are obtained with Pspnet.

3. Robust Adversarial examples
Though previous works [1, 13] have already demon-

strated some of the basic attack (mostly non-targeted at-
tacks) on semantic segmentation, all of them add noise to
the images before predicting the segmentation mask. How-
ever, this attack model is unrealistic in the real world be-
cause it requires that the adversary add perturbation to the
whole environment. For example, assume that we want to

Figure 4: Poor transferability of adversarial perturbation be-
tween different images. Initially, an adversarial perturbation
is added to the original image of a pay-phone to misclassify
it as goldfish. However, as we rotate or crop the image, it is
no longer classified as goldfish.

incorrectly predict the mask for all traffic signs for self-
driving cars which used semantic segmentation in the first
stage i.e, perception module. To fool such systems, an ad-
versary needs to account for different position, angles, size
of the signs in a given captured frame from the camera be-
cause they will vary depending on the distance of the car
from them.

In a threat model, where the adversary has the access to
vision pipeline of the concerned system, it is valid to assume
that the adversary can add perturbation to the whole image.
This threat model poses a significant risk given its relevance
in the domain as medical image analysis, static vision APIs
(such as Calrifai, Google cloud vision api). To investigate
the complexity of robust adversarial examples for semantic
segmentation, we first start with this threat model.

The primary constraint for the adversary in this threat
model is to add only non-perceivable perturbation. The is
realized by bounding the Lp norm of perturbation. It should
be noted that bounds on Lp norm of perturbation is neither
necessary nor sufficient condition for the non-perceivability
of added perturbation. We refer the interested reader to [10]
for detailed discussion. In this work we consider the bounds
on L1 norm for adversarial perturbations.
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(a) Original image (b) Random cropping

(c) Affine transformation (d) Contrast and gamma variation

Figure 5: Limitation of non-robust adversarial examples in
presence of image transformations. Similar to classifica-
tion, the adversarial nature of added perturbations dimin-
ishes, as soon as we apply an input transformation.

3.1. Transformation Invariance

Previously, we assume that given an image the adversary
can solve an optimization problem to generate the corre-
sponding adversarial example. To be termed as a robust ad-
versarial example the added perturbation should hold across
different transformation. Fig. 5 demonstrate the limitation
of adversarial examples generated for a given image to dif-
ferent transformations. Initially, we generate an adversar-
ial example for a given image from cityscape dataset such
that all pixels will be classified as Truck. Fig. 5a shows the
success of the adversary where all pixels are classified as
Truck. However, as we apply random cropping, perspective
transformation or random contrast changes, the images no
longer retain it’s adversarial nature.

Note that this property of adversarial perturbation is not
unique to segmentation. Fig. 4 shows similar results for
image classification, where rotated or cropped images will
no longer be adversarial. This behavior for classification
has been studied in some of the previous works ( [2, 11]),
however, it’s not studied for segmentation yet.

The lack of robustness in the adversarial examples can be
evident from the formulated optimization problem. As the
optimization problem doesn’t account any information for
such transformation, it is not surprising why the resulted so-
lution breaks down when such transformations are applied.

To generated robust adversarial examples, adversary
need to account the transformations to solve the fundamen-
tal optimization problem in first place [2]. This leads to the
redefining the optimization problem as mentioned below.

arg min
x′

1

n(T )

∑
T

(c ∗ L(x′, y) + ||x′ − x||1)

This formulation allows adversary to minimize loss over a

transformation set T , whre n(T ) is number of transforma-
tion applied.

In this work we consider the following transformations.

• Scale Invariance We randomly change the scale of the
input image by ±10% to simulate this behavior. It al-
lows the adversarial examples robust to change in scale
of an object in the scene.

• Affine transformation To account for the different
change in perspectives, we apply a random affine trans-
formation for each input image.

• Contrast invariance we change the contrast and
gamma for each image randomly to simulate the effect
of different environmental condition.

With the expectation over transformation, we hope to
capture a large distribution of possible transformation in the
real world. In turn, it will result in the adversarial image
will likely be adversarial i.e, incorrect output segmentation,
even if account to a real-world test. However, it should be
noted that this is just a hypothetical case, as it’s not possible
to add perturbation in the whole environment (e.g, how to
add perturbation in the sky). As discussed in Section 5, the
adversary can select a few physical objects on which adver-
sarial stickers can be placed.

Fig.6, 7 shows the output results, after including input
transformations in optimization problem, for Pspnet and
DeeplabV3+ respectively. It can be noted that the gener-
ated adversarial examples are adversarial to included trans-
formations. To refute any claim that the transformation it-
self may have degraded network output, we show output
for original image with transformation in fig. 8 (output with
Gaussian noise in fig 16). It shows that the degradation of
output segmentation is only contributed by the added per-
turbation.

3.2. Black-box attacks

Previous work on adversarial attacks on image classifi-
cation have shown transferability of adversarial examples
between different networks. Here, we test this hypothesis
by evaluating output segmentation of given network on ad-
versarial examples generated from another. Table 2 shows
the per-pixel accuracy for adversarial examples generated
from the alternate model. It shows a poor transferability
of adversarial examples between these two different mod-
els. Fig. 9 shows the output segmentation for some of these
black box adversarial examples.

4. Receptive field
State of the art image segmentation networks such as

DeeplabV3+, Pspnet uses resnet-50/101 as their backbone
architecture. Theoretical receptive field for both resnet-50
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(a) Random crop-
ping

(b) Affine trans-
formation

(c) Contrast and
gamma variation

Figure 6: Robust adversarial examples for Pspnet. It can
be noted that despite input transformation, the adversarial
examples output are corrupted to a significant fraction.

(a) Random crop-
ping

(b) Affine trans-
formation

(c) Contrast and
gamma variation

Figure 7: Robust adversarial examples for DeeplabV3+. It
can be noted that despite input transformation, the adversar-
ial examples output are corrupted to a significant fraction.

and resnet-101 is even comparable to input size (which is
713×713 in this work). The receptive field size further in-
creases with the addition of modules to incorporate global
information in segmentation networks. This motivates us to
believe that the changes in single part of the image should
be able to have an effect output segmentation for all pixels.
As explained later, it turns out that the effect is limited to
only local output pixels, due to poor gradients for non-local
pixels.

4.1. From Imagenet to Cityscape - a tale of effective
receptive field

Though neglected thus far by the previous works on ad-
versarial attacks and defenses, there exists an important re-
lationship between the receptive field size and adversarial
strength for the adversary. Fig 10 demonstrate the impact
of adversarial perturbation when the adversary is limited to

(a) Random crop-
ping

(b) Affine trans-
formation

(c) Contrast and
gamma variation

Figure 8: Output segmentation of original images with dif-
ferent transformation. It shows that the without the adver-
sarial perturbation the networks output is not degraded by
the transformation.

Table 1: Mean L-1 norm and per-pixel accuracy of the
generated adversarial examples for the 20 images from the
Cityscape test dataset. Lower L-1 norm refers to the imper-
ceptibility of generated adversarial examples. Further, per-
pixel accuracy measures the degradation of output segmen-
tation for given images. As the ground truth segmentation
for Cityscape test set is not released, we measure the accu-
racy w.r.t. model output for the original image. It should be
noted the despite having a high L-1 norm the per-pixel ac-
curacy of adversarial examples of DeeplabV3+ is high. We
study this effect late in section 4.1.1.

Pspnet DeeplabV3+
L-1 norm
(mean) 2.23 1.89

per-pixel
accuracy(%) 3.43 22.3

Table 2: Per-pixel accuracy of adversarial examples in
black-box attack model. We evaluate Pspnet on adversar-
ial examples generate from DeeplabV3+ and vice versa. It
can be noted that the transferability of adversarial examples
between these two models is very poor.

Pspnet DeeplabV3+
per-pixel

accuracy(%) 83.17 85.17

add it only to a pre-defined mask. Fig 10a demonstrate the
impact of perturbation when it is added to pixels labeled as
a car. Fig. 10b refer a more plausible model in the physical
world (discussed in detail in section 5), where the adver-
sarial perturbation is limited to space at the back of the car
which can be thought of sticking a poster carrying adver-
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(a) Pspnet (b) DeeplabV3+

Figure 9: Output segmentation of adversarial examples in
black box attack model.

sarial perturbations. Both of these examples demonstrate
how adversarial perturbation is only affecting the local pix-
els only. This strikes the question of why the effects are only
local given that theoretical receptive field spans the whole
image.

(a) Perturbation added to pixel
having label as car.

(b) Perturbations added to a pre-
defined mask.

Figure 10: Output segmentation of adversarial examples
when perturbation are added to a selected mask. It can be
noted that the effects of such perturbation are only local.

The answer can be traced back to to work in [15], which
shows the effective receptive field for last convolution layer
for Alexnet trained on Imagenet is approx. 70 pixels.
Fig. 12a,12b demonstrate the propagation of changes of
adding an adversarial mask to misclassify Irish wolfhound
as goldfish. Due to the limited effective receptive field, both

at last CNN layer and layer before that the changes are only
local. In the end, the network wrongly classified the input
because the global pooling is performed on all output fea-
tures of final CNN layer before classification.

However semantic segmentation proposes a unique chal-
lenge because of the absence of any global pooling in the
state of the art networks. Though, there exist some mech-
anism to incorporate more global information, such as PSP
modules in Pspnet and dilate convolution in Deeplabv3+,
the improvement in adversarial success is not significant. In
spite of these steps if the effective receptive field of the net-
work is not large enough, therefore, perturbation effects are
only going to be local. Fig. 12 further demonstrate this ef-
fect, when local perturbation to whole car (fig. 12a,10a) and
the mask on the back of car (fig. 12b,10b) are only prop-
agating changes to local activations in the feature space.
Though the addition of PSP module, which does a sparse
global pooling, increase this impact, but not to a large ex-
tent.

(a) Perturbation added to pixel
having label as car.

(b) Perturbation added to pixel
having label as car.

Figure 11: Changes in the of layer before and after psp
modeuls in Pspnet due to added perturbation (fig. 10)

(a) mask-1 (b) mask-2

Figure 12: Perturbation added to the selected mask to an
image from imagenet test dataset. In both cases, the ad-
versarial image is classified as goldfish. It can be noted the
changes in the CNN layer of classification networks are also
local. But the image is misclassified due to global feature
aggregation at the output CNN layers.
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Table 3: Effective receptive field of the networks consid-
ered in this work. Resnet-50 is used for image classification
study and rest for image segmentation. We report the mean
of the receptive field across 1000 images from the respec-
tive test dataset.

Resnet - 50 Pspnet Deeplabv3+
Effective receptive

field 222 353 344

4.1.1 Measuring effective receptive field

To get a better understanding of behavior of different neu-
ral networks under masked perturbations, we did a small
scale empirical measurement of the receptive field. For each
model, we select a few output neurons in the last CNN layer
of the network. For each of these neurons, we calculate
gradient at the input for a given image. As expected the
gradient will be non-zero for all pixels in the input image.
However, the value will be significant for only a few local
pixels. To extract the effective receptive filed we select pix-
els with having gradient greater than 10% of the maximum
value. Based on these pixels we first calculate the centroid
and the then calculate distance of each of these pixels from
the centroid. To avoid the impact of outliers, we select the
top-50 farthest pixel and report their mean distance from the
centroid (after multiplying by a factor of 2 because mean
represent effective radius, while receptive field refers to the
diameter of total pixels covered), as the effective receptive
field. It should be noted that the number in table 3 are highly
dependent on the input image and selected output neurons.
To avoid this bias to some extent we report mean values
across 1000 input images. However, a large-scaled, similar
to [15], is necessary to calculate the correct effective recep-
tive field size. Our motivation here is to only look at the
relative values for different neural networks.

To our surprise, we observe that the receptive field for
segmentation networks (Pspnet and DeeplabV3+) is also
quite high. Both of these networks use Resnet-101 as the
backbone network. However, we observe that the adversar-
ial success for DeeplabV3+ is significantly lower than Psp-
net. Given the approximately same effective receptive size,
we wonder what may have triggered this behavior. One
possible explanation can be the sparsity of input receptive
field. We generally observed only a few pixels having sig-
nificantly high gradients in DeeplabV3+, as compared to
Pspnet (fig. 13). Fig. 13 shows the gradient at input node for
three different neurons for a given image (fig. 5a). Note that
for Deeplabv3+, the gradient is distributed across as many
pixels as Pspnet, but more sparsely. As the magnitude of
the gradient is input directly tied to the strength of adver-
sarial attacks, we see less reduction in per-pixel accuracy
for DeeplabV3+ (table 1).

(a) Pspnet

(b) DeeplabV3+

Figure 13: Input gradient of the image used in fig.10 for
three output neurons of both networks. It can be noted that
the gradients for the DeeplabV3+ model are much sparse
than Pspnet, which results in a improved adversarial robust-
ness of the former.

5. Physical adversarial examples

In previous experiments, we assumed that the adversary
can add perturbation to the whole image. As argued previ-
ously this assumption is not realistic in real-world systems
such as self-driving cars [5, 9], which uses segmentation in
the vision pipeline of the systems. A more realistic system
approach is where adversary add the perturbation to some
real objects in the environment (similar to sticking a poster
to an object). Fig.14b shows results for some of these im-
ages. Due to the limited effective receptive field, these per-
turbation have only local effect.

However, even with this limited capacity adversary can
deliver significant damage to the learning algorithm used.
A specific example can be wrong segmentation label for ad-
versarial traffic signs. Some previous works have targeted
this problem from the perspective of image classification by
sticking adversarial patches on top of these signs. The work
can be simply extended to image segmentation also. An-
other direction is out of distribution attacks [11]. Instead of
adding perturbation in a given image from training distri-
bution and making it adversarial, out-of-distribution attacks
samples images from the random noise or other distribu-
tions. For examples, it can be first selecting a random noise
or images of some random logo and add adversarial pertur-
bation on top of it to classify as the target label. Now in-
stead of classification, we can formulate this problem with
respect to segmentation. However, due to limited time and
space, we left these two problem for future work.
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(a) Pspnet (b) DeeplabV3+

Figure 14: Output segmentation of adversarial examples
when perturbation are limited to a predefined mask. It can
be noted that for all images the effect of these perturbation
are only local.

6. Conclusion and Future work
In this work, we study the success and limitation of gen-

erating adversarial examples for semantic image segmenta-
tion. We consider state of the art image segmentation net-
works (DeeplabV3+, Pspnet) for this study. First, we study
the complexity of robust adversarial examples generation
and shows adversarial success for both models. It turns out
that adversary can generate examples robust to scale, per-
spective and contrast variations. However, we found that
DeeplabV3+ is more robust than Pspnet to some extent.

Later we consider the threat model where adversary is
only allowed to add perturbation to a predefined mask. It
turns out that the segmentation networks are highly robust
to non-local perturbation. We compare this with previous
results on image classification and explain why the lack of
global feature aggregation make these networks more ro-
bust.

To explain these results we further study the effective re-
ceptive field of these networks. As expected the effective
receptive field for the output layer was significantly less
than the theoretical receptive field. It also helps us to ex-
plain why DeeplabV3+ is more robust to adversarial pertur-

bations than Pspnet.
For future work, we plan to extend these properties to im-

age classification networks. We argue that simply a global
pooling at the last CNN layer output feature is not a fruit-
ful solution from the perspective of adversarial robustness
of a network. More sophisticated classifiers should be de-
signed at top of dense features. This can at least make the
network more robust to adversarial patches. Another direc-
tion, which is totally unexplored, is the adversarial defenses
(primarily adversarial training [6]). It will interesting to see
how easy/difficult is to increase the robustness of image seg-
mentation networks using the adversarial training.
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A. Appendix

Figure 15: 20 random input images from Cityscape test dataset considered in this work.
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(a) Random cropping (b) Affine transformation (c) Contrast and gamma variation

Figure 16: Output segmentation for different transformation when a 5% white guassian noise is added to the original image.
It shows that then even output with guassian noise is also consistent across transformations.
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