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Abstract

We investigate the utility of Tensor Comprehensions, a
recently released library from Facebook AI Research that
automatically creates high performance CUDA kernels for
arbitrary mathematical operations on tensors. We apply it
to optimize specific components of the Capsule Network ar-
chitecture, a novel neural network by Sabour et al. [10],
which uses many uncommon computation layers that are
suboptimal using standard kernel libraries. Combining all
of our optimizations, we produce the fastest PyTorch imple-
mentation of the Capsule Network architecture as far as we
know, accelerating training by 2.2X and inference by 3.8X
compared to our reference implementation.

1. Introduction
With NVIDIA’s release of CUDA in 2007 [7], and the

discovery of neural network acceleration on GPUs [9], sig-
nificant work has gone into the optimization of common
neural network layers and tensor operations performed on
GPUs. A major milestone in this process was NVIDIA’s
2014 release of cuDNN [3], a library of kernels (func-
tions sent to run on the GPU) that implement the most
common mathematical operations used by modern convo-
lutional neural networks and their layers, including con-
volution, pooling, normalization, and activation functions.
CUDA also supports BLAS-like tensor operations through
cuDNN and cuBLAS. BLAS is a specification of linear
algebra routines, including vector addition, matrix-vector
multiplication, and matrix-matrix multiplication. This in
turn allowed deep learning researchers and engineers to fo-
cus on innovation in model architectures instead of directing
effort into the low-level specifics of GPU performance.

Nowadays, nearly all commonly used deep learning
frameworks are built upon cuDNN/cuBLAS to easily take
advantage of its GPU acceleration for common operations.
While they provide efficient implementations for this set of
operations, they do not supply similarly optimized imple-
mentations for non-standard operations. As a result, in-
novative architectures that make use of uncommon tensor

operations or propose new ones are often left unoptimized
for GPU acceleration. This makes it harder for research to
continue efficiently in these directions. To address this is-
sue, Facebook AI Research (FAIR) recently released Tensor
Comprehensions (TC) [11], a library made to automatically
generate high-performance CUDA kernels for arbitrary ten-
sor operations.

The architectures most likely to benefit from TC for
training and inference are those where the computational
bottleneck is a non-standard operation unlikely to be prop-
erly optimized by cuDNN or other GPU libraries. We con-
firm our guess that one such type of model is the recently
introduced Capsule Network, by Sabour et al. [10]. It pro-
poses a dramatic deviation in architecture and training from
typical neural networks, replacing the basic building block
of the standard neuron, which takes in an array of scalar
values and outputs a single scalar value, with a capsule
whose inputs and output are vectors. In this paper, we apply
TC’s automatic CUDA kernel generation and optimization
to multiple tensor operations used by CapsNet, resulting in
the following contributions:

• The fastest known (and computationally correct) Py-
Torch implementation of the CapsNet architecture

• An analysis of some success and failure cases of the
TC library

• Suggestions for further optimizations

2. Background

2.1. Capsule networks

Sabour et al. [10] introduces capsule networks with dy-
namic routing, a new neural network paradigm intended to
improve upon traditional convolutional neural networks in
computer vision. In a normal linear layer, an individual neu-
ron takes in many scalars, weighs them, then sums them,
then spits out a scalar which passes through a nonlinearity
like ReLU to become the final output. The larger the mag-
nitude of the output, the stronger the indication of some sort
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of feature. For efficiency, many neurons’ features are cal-
culated simultaneously, making the whole operation equiva-
lent to a matrix-vector multiplication, which is a BLAS rou-
tine, and therefore optimized by GPU libraries. The deeper
layers in a network convey more abstract features.

Similarly, the fundamental unit of computation in a cap-
sule network is a capsule. It takes as inputs many vec-
tors, which are transformed (a step not found in neurons),
weighed, and summed, resulting in a single vector which is
then nonlinearly transformed to have magnitude less than
1. Part of this process is equivalent to a batch matrix-vector
multiplication, which is also a BLAS routine. A capsule’s
output vector is intended to capture an explicit parametriza-
tion of some feature through its direction, as well as the
feature’s strength from its magnitude. Output vectors are
then treated as a finite resource, and their magnitudes are
shared among the capsules in the next layer with weights
determined by the so-called dynamic routing algorithm. At
a high level, this routing algorithm effectively clusters lower
level features into groups that cause strong responses in
higher level capsules.

While normal neural networks often exclusively consist
of the operations implemented by optimized libraries, Cap-
sNets require many other tricks, including tensor dimension
transpositions, a unique nonlinearity applied to vectors in-
stead of scalars, forms of element-wise tensor multiplica-
tions, and softmax applied across interior dimensions of a
tensor, thus motivating the need for custom kernels. We go
into great detail about the specifics of the capsule computa-
tion and the dynamic routing algorithm in Section 3.

2.2. Tensor operation optimization

2.2.1 CUDA optimization

To convey the difficulty of writing custom kernels, here we
walk through some optimizations drawn from a computer
architecture course [1] one might use to improve the per-
formance of something like matrix multiplication to get a
sense of what can cause CUDA kernel improvements. If we
are trying to multiply matrix A by B and adding matrix C
to get D, we attempt to do a triple-nested for loop, where in
the inner most loop we accumulate

dik =
∑
j

aijbjk + cik. (1)

CUDA’s computation model consists of many threads
running the same kernel concurrently. CUDA has 3 lev-
els of memory: global, shared, and local. Each successive
group is accessible by fewer CUDA threads, is smaller, but
is also faster. By tiling the matrices into smaller regions
and using shared memory among groups of threads to re-
duce the amount redundantly read from global memory, we
can make the matrix multiplication faster. Too small or too

large a tile size degrades performance. Transposing B can
further help with memory access performance due to the
coalesced memory access from B now being column-major.
The right order of the 3 loops helps, but the number of loop
order options increases rapidly for higher dimensional op-
erations.

CUDA also possesses many float primitives, such as
fused multiply-add, allowing the accumulation operation
dik := dik + ai1b1k to be done with a single arithmetic
instruction as opposed to two.

Finally, we can use loop unrolling (explicitly listing out
the same instructions many times to reduce time spent in-
crementing loop variables) to further improve throughput.
Doing too much rolling causes the kernel code byte size to
be too large, slowing down performance.

Most of these optimizations would be similar to steps
one might take for CPU-based matrix multiplication opti-
mization, with the exception of the use of tiling and shared
memory that is made possible (or necessary) by the CUDA
computing/threading model. More sophisticated, math-
based optimizations exist for convolutions, which are im-
plemented by cuDNN, such as in Lavin and Gray [6].

One can see that it is difficult for a researcher to spend
so much time researching every optimized GPU primitive
available, meticulously managing memory and computa-
tion bandwidths, and testing different hyperparameters to
get good computation efficiency for kernels they come up
with. (They already have enough hyperparameters to deal
with in their neural nets!) The TC library automates this
entire process.

2.2.2 Tensor comprehensions

It is impractical to expect high performance computing
knowledge and engineering expertise from deep learning
researchers, but the pace of research is also slowed by in-
efficient research code. FAIR’s TC library [11] strives to
eliminate the problem by allowing researchers to translate
math expressions they write in a custom language directly
into performance-tuned kernels.

As an example, we walk through how to specify a
matrix-matrix multiplication operation in TC’s mathemat-
ical notation. Let A ∈ RM×N and B ∈ RN×P be the two
matrices to be multiplied to yield matrix C ∈ RM×P . The
corresponding representation in TC notation is:

def mm(float(M,N) A, float(N,P) B) -> (C) {
C(i, j) +=! A(i, k) * B(k, j)

}

TC borrows from Einstein notation to allow conciseness. The
dimensions of C are inferred from the index variables used, and
any variable on the right but not on the left is summed over. The
operator +=!, means that C(i,j) should be incremented by a
sum (“+=”) over the right hand side, and initialized to 0 (“!”).
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When compiled by TC, this computes the same output as the
following C++ loop:

for(int i = 0; i < M; i++) {
for(int j = 0; j < P; j++) {
C(i,j) = 0.0f;
for(int k = 0; k < N; k++) {

C(i,j) += A(i,k) * B(k,j);
}

}
}

Note that the loop order of [i,j,k] in the C++ code must be
arbitrarily chosen whereas the tensor comprehension language is
independent of the loop order.

TC’s notation is flexible enough that it can express other com-
mon tensor operations for neural networks like convolution (in-
cluding strided and grouped), and it has direct access to CUDA
math functions for performance.

2.3. Broadcasting
Broadcasting is a notational convenience. It is a way of per-

forming element-wise tensor operations between tensors with dif-
ferent shapes by implicitly expanding them to have the same
shape. As an example [2], take the sum of two tensors, one with
dimension 2×3 and one with dimension 1×3 (but fundamentally
just a vector of length 3):[

1 2 3
4 5 6

]
+

[
7 8 9

]
(2)

=

[
1 2 3
4 5 6

]
+

[
7 8 9
7 8 9

]
(3)

=

[
8 10 12
11 13 15

]
(4)

In this example, broadcasting is performed in (3) along the ver-
tical dimension. We hypothesize that broadcasting is significant
not only because it is used throughout CapsNet code, but also be-
cause it offers an opportunity for TC kernels to outclass CUDA li-
braries. TC notation does not require broadcasting due to its more
intelligent summation. Those libraries are often made with certain
memory access assumptions, like the fact that each element in a
2 × 3 tensor needs to be loaded, since they are all unique. When
broadcasting happens, this is not the case, and the optimal kernel
may look different due to the reduced memory cost since many of
the elements are the same.

As a basic example, consider the implicit broadcasting of a vec-
tor multiplied by a scalar. The scalar could have its memory read
by one thread and used by CUDA shared memory neighbors. We
further hypothesize that optimizations exist for low dimensional
cases but are unlikely to generalize to optimum kernels for higher
dimensional tensors with multiple broadcast dimensions. It is im-
possible to say, since cuDNN is closed source. We test this hy-
pothesis in many of our kernels, particularly in Section 3.5.

3. CapsNet Architecture and Optimizations
For this paper, we focus on optimizing the standard CapsNet

that tackles the MNIST classification task (predicting digits 0−9).

We walk through the general architecture as well as the specific
TC kernels and optimizations we explored. Figure 1 ([10]) serves
as a visual reference for the CapsNet architecture. To skip the
implementation details, a summary of all of our optimizations is
in Section 3.6.

3.1. Setup
We based our implementation off of the open source Gram.AI

implementation [5]. This is because it is the most starred PyTorch
implementation on GitHub. The two other most popular imple-
mentations are already noticeable less efficient, because they fail
to make use of higher dimensional operations [4, 8]. This may be
due to simplicity of the code or ease of understanding since these
networks are largely educational and not practical for anything yet.

We also note that many of these implementations are incorrect.
One by higgsfield [4] fails to correctly compute the outputs of Pri-
maryCaps describe in 3.4. Gram.AI incorrectly computes the loss
function over a softmax output instead of the pre-softmax values.
This underscores the difficulty of understanding the architecture,
making a correct and fast implementation all the more valuable.

We reuse the loss implementation from Gram.AI. We did not
compare across models for other neural network frameworks, as
it would not be as fair of a comparison, given different levels of
library support. Our use of PyTorch is partially from its popularity
as a library but also from its status as the only Python framework
supported by TC.

In reimplementing Gram.AI’s version [5], we noticed three ar-
eas where the basic PyTorch code seemed inefficient, and mod-
ified these areas with functionally equivalent, more efficient Py-
Torch code. These changes will be mentioned below as we go
through the CapsNet architecture. By optimizing the baseline
code, other than the obvious benefits, we can construct a more
realistic measurement of the practical value of TC’s performance
improvements.

We looked for higher-dimensional, atypical tensor operations
that we believed would yield the most potential benefit if imple-
mented in TC, identifying 6 such operations in the CapsNet archi-
tecture. We also implement a standard convolution and ReLU op-
eration in TC, which lacks theoretical motivation for optimization,
but is used as an additional benchmark to test TC’s effectiveness.
The relevant dimensions used to explain these operations are as
follows:

• BA = 100 : batch size

• C0 = 256 : # output channels of Conv1 layer

• C1 = 8 : size of PrimaryCaps capsules’ vector outputs

• C2 = 16 : size of DigitCaps capsules’ vector outputs

• RO = 32×6×6 = 1152 : # capsules in PrimaryCaps layer

• CA = 10 : # capsules in DigitCaps layer (= # classes)

3.2. Defining the TC gradient kernel
One unfortunate consequence of using the TC library is that

the corresponding tensor operation(s) cannot take advantage of au-
tomatic differentiation present in PyTorch or other deep learning
frameworks. Rather, the gradient of the tensor operation must also
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Figure 1. 3-layer CapsNet architecture proposed in Sabour et al. [10] to tackle the MNIST classification task. ReLU Conv1 is a standard
convolutional layer. PrimaryCaps is a convolutional capsule layer. DigitCaps is a standard capsule layer. Dynamic routing of capsule
outputs is performed between the PrimaryCaps and DigitCaps layers. This figure was taken from Sabour et al. [10].

be implemented in TC notation in order to be used in the back-
ward pass during training. Additionally, we found that due to cur-
rent limitations in the library, TC is currently unable to represent
the backward pass of convolutions. For these and other operations
where only the forward pass was implemented, the generated ker-
nels were only used during inference and not during training.

3.3. Conv1 layer
The first capsule layer is a standard convolution layer with 9×9

kernels, a stride of 1, and ReLU activation. It takes in a batch of
input images in the form of a tensor I ∈ RBA×28×28 and outputs
a tensor O ∈ RBA×C0×20×20 (there are C0 total kernels).

As convolution followed by ReLU is a typical operation al-
ready optimized by cuDNN for GPU performance, we did not
expect significant performance benefits from TC optimization but
rather used it as a test to ensure that TC was able to generate a
kernel with comparable performance. We wrote a equivalent TC
implementation named CONV1 for the forward pass of this opera-
tion.

3.4. PrimaryCaps layer
The second capsule layer is a convolutional capsule layer made

up of 32 feature channels where each channel is comprised of 8-
dimensional capsules (instead of 1-dimensional features/node ac-
tivations in a standard convolutional layer). The individual con-
volutions are 9 × 9 kernels with a stride of 2. The operation
takes the tensor O ∈ RBA×C0×20×20 output by the Conv1 layer
and a tensor kernel K ∈ R32×C0×9×9×C1 and outputs a tensor
X’ ∈ RBA×32×6×6×C1 . After convolution, the output tensor is
reshaped by collapsing the channels, height, and width dimensions
into a single dimension to yield a tensor X ∈ RBA×RO×C1 , on
which the squash nonlinearity is run along the last dimension.

This high-dimensional strided operation does not perfectly
match up with normal convolution due to the C1 dimension at the
end of the involved parameters. Therefore, it is cannot be opti-
mized by some cuDNN convolution template and is thus a prime
candidate for TC optimization which we call PRIMARYCAPS

CONVOLUTION (TC). Unfortunately, after writing the TC kernel
and attempting to optimize it, the TC autotuner kept hanging and
failed to make progress in kernel optimization.

Within standard PyTorch, there are still many different ways
of implementing this convolutional capsule layer operation. The
reference implementation [5] (1) performs C1 standard stride-2
convolutions with C0 input channels and 32 output channels on a
20 × 20 image with a 9 × 9 kernel, resulting in a 6 × 6 region,
(2) collapses the non-batch dimensions (32 × 6 × 6) to get one
dimension of size RO, and (3) concatenates the C1 output tensors
along a new dimension to yield a BA × RO × C1 output tensor.
By the term collapse, we mean that we simply combine the indices,
like how a 3×3 matrix can be equivalently represented as a vector
of length 9. This is a free operation since no data is moved in
the process, as long as the dimensions are adjacent. The reverse
operation of splitting is also free for adjacent dimensions.

The reference implementation’s repeated convolutions are a
point of potential inefficiency, so we also test an implementation
that instead (1) performs a single convolution with C0 input chan-
nels and 32×C1 = 256 output channels with the same stride and
kernel size, (2) splits the 256 channels into C1 and 32 for free,
(3) collapses the now adjacent dimensions to get RO, then trans-
poses it to dimensions BA×RO×C1. We call this optimization
PRIMARYCAPS CONVOLUTION (PYTORCH).

3.4.1 Squash nonlinearity (TSquash)

While most conventional neural networks use ReLU, or
max(x, 0), as their activation function, CapsNets use squash,
which is defined on a vector as

squash(~x) =
|~x|2

1 + |~x|2
~x

|~x| (5)

=
|~x| ~x

1 + |~x|2
. (6)

The squash performed along the vectors of the C1 dimension
of the output tensor is another potential area for improvement. Fur-
thermore, this operation can be combined with the previous trans-
position operation into a single kernel that performs both trans-
position and squashing. We implement this operation as a kernel
that takes in a 3-dimensional tensor in RBA×C1×RO , applies the
squash operation along the C1 dimension, and transposes the ten-
sor to dimensions RBA×RO×C1 . For this operation we only de-
fined the forward pass in TC and call the optimization TSQUASH.
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TSQUASH is an example of layer fusion. Layer fusion com-
bines two or more operations that normally would occur in sepa-
rate kernels. The performance improves largely because interme-
diate values do not require storage in global memory, thus saving
time. The previously mentioned CONV1 optimization fused con-
volution and ReLU into one kernel, for example.

3.5. DigitsCaps layer
The third capsule layer is a capsule layer with a (C2 = 16)

16-dimensional capsule for each digit class, each receiving in-
put from all capsules in the previous layer. The DigitCaps layer
first transforms the output it receives in the previous layer by per-
forming a high dimensional tensor operation that takes in input
X ∈ RBA×RO×C1 and weight tensor W ∈ RCA×RO×C2×C1 and
outputs U ∈ RCA×RO×C2 .

This was the second area where we noticed a potential ineffi-
ciency in the reference PyTorch code. They perform matrix mul-
tiplication of the input tensor X by the weight tensor W instead
of the other way around (multiplying W by X). The latter ap-
proach seems to be more standard as it is most similar to BLAS-
like batch matrix-vector multiplication, whereas the Gram.AI ver-
sion expressed an equivalent row vector-matrix multiplication, so
we changed the weight dimensions and operation accordingly. We
call this optimization U CALCULATION (PYTORCH).

The equivalent TC operations is as follows:

U(ba,ca,ro,c2) +=!
W(ca,ro,c2,c1) * X(ba,ro,c1)

In addition to rewriting the PyTorch implementation of this
operation, we also attempted to optimize it using the above TC
formula. While this operation is similar to standard batch matrix-
vector multiplication, the additional dimensions require broadcast-
ing and reusing of the same matrices for multiplication multiple
times, which entails multiple accesses of the same memory lo-
cation, something that may not be optimized by standard kernels
which usually only use each matrix and vector once. Because of
this, we suspected TC may yield performance benefits compared
to standard baseline kernels.

For this operation, we defined both the forward and back-
ward passes of the tensor comprehension named U CALCULATION

(TC), allowing optimized kernels to be used during both training
and inference.

3.5.1 Permuting tensor dimension order

Since we represented W as a 4D tensor, as opposed to a more naive
implementation which would treat it as a large bank of matrices,
we have the option to permute the order of the dimensions of W.
There are 24 orders for the 4 dimensions, with the inner (more
right) dimensions being “more” contiguous in GPU memory than
the outer (more left) dimensions. By testing all possible orders,
we were able to find a more efficient kernel than just picking one
of them for U CALCULATION (TC).

3.5.2 Dynamic routing algorithm

Between the PrimaryCaps layer output and DigitCaps layer out-
put, the dynamic routing algorithm must be performed to deter-

mine what fraction of each PrimaryCaps capsule’s output vector is
sent to each DigitCaps capsule as input. The routing algorithm it-
eratively allocates the magnitude of vectors across DigitCaps cap-
sules, feeding them toward capsules which agree with them (as
measured by a dot product with the DigitCaps capsule’s output).
The CapsNet implementation we use has 3 iterations for routing,
each iteration receiving Bi ∈ RBA×CA×RO×C2 from the previous
iteration with B0 equal to the zero tensor. The routing algorithm
for each iteration i is as follows:

1. Ci ∈ RBA×CA×RO×C2 is equal to the softmax of Bi along
the RO dimension.

2. Si ∈ RBA×CA×C2 is calculated by taking the element-wise
multiplication of U and Ci and summing along the RO di-
mension. The equivalent TC formula is:

S(ba,ca,c2) +=!
C(ba,ca,ro,c2) * U(ba,ca,ro,c2)

3. Vi ∈ RBA×CA×C2 is calculated by taking squash of Si

along the C2 dimension

4. Bi+1 ∈ RBA×CA×RO×C2 is calculated by taking the
element-wise multiplication of U and Vi with Vi broadcast
along the RO dimension and summing along the C2 dimen-
sion to yield Btemp ∈ RBA×CA×RO . This value is then
added to Bi (by broadcasting Btemp along the C2 dimension)
to yield Bi+1. The corresponding TC formula is:

B_temp(ba,ca,ro) +=!
U(ba,ca,ro,c2) * V(ba,ca,c2)

B_new(ba,ca,ro,c2) =
B_old(ba,ca,ro,c2) +
B_temp(ba,ca,ro)

The third inefficient area was the implementation of the soft-
max used in step 1. They perform unnecessary transposes of Bi

instead of using the built-in dim argument of PyTorch’s softmax
function. We corrected this in our implementation and call the
optimization SOFTMAX.

We wrote TC optimization code for steps 2, 3, and 4 as they
deal with high-dimensional matrix multiplications and reductions
which suggest they may be potential points of optimization for TC.
For step 2 we wrote TC kernels for both the forward and backward
passes while for steps 3 and 4 we only wrote the forward pass. The
TC optimizations are named as follows: 2 is S CALCULATION, 3
is SQUASH, and 4 is B CALCULATION.

After the last iteration of the routing algorithm, the final V is
passed through three linear layers and used to infer the class and
calculate loss. The details of this loss and the decoding step are
not relevant to this paper and are available in Sabour et al. [10].

3.6. Summary of optimizations
In total, we attempt 3 PyTorch optimizations and 7 TC opti-

mizations over the reference implementation. The PyTorch opti-
mizations are:

1. U CALCULATION (PYTORCH). Reorder the tensor multipli-
cation in the calculation of U to be W@X instead of X@W
(@ is the PyTorch operator for matrix multiplication).
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2. SOFTMAX. Fix step 1 of the dynamic routing algorithm to
take advantage of the dim argument in PyTorch’s softmax
operation instead of performing unnecessary transposes.

3. PRIMARYCAPS CONVOLUTION (PYTORCH). Convert it-
erative convolutions and concatenation in the PrimaryCaps
layer to a single convolution followed by reshaping and
transposing.

The TC optimizations are:

1. CONV1. Perform standard convolution + ReLU for the first
layer.

2. PRIMARYCAPS CONVOLUTION (TC). Perform capsule con-
volutions for the PrimaryCaps layer. Note that this TC kernel
failed to autotune and so is not useable.

3. U CALCULATION (TC). Calculate U by performing equiva-
lent of batch matrix-vector multiplication in TC.

4. S CALCULATION. Calculate S in the dynamic routing algo-
rithm by taking element-wise multiplication of two tensors
and summing across the RO dimension.

5. B CALCULATION. Calculate B in the dynamic routing algo-
rithm by taking element-wise multiplication of input tensors
with broadcasting, summing along the C2 dimension, then
performing broadcasted addition.

6. SQUASH. Perform standard squashing used in the dynamic
routing algorithm.

7. TSQUASH. Perform both squashing and transposition in
the PrimaryCaps layer after PRIMARYCAPS CONVOLUTION

(PYTORCH).

4. TC kernel autotuning
TC can define a baseline inefficient kernel given an input string.

However, if one knows the sizes of the input tensors in advance,
one can use TC to automatically search for better kernels tuned
for those sizes. TC uses a genetic algorithm approach, where a
population of kernels which are defined by some parameters are
bred over many generations to produce the fastest possible kernel.

At each generation, they are all benchmarked on GPU, and de-
pending on their performance, a certain percentage of them will
survive. Some number of the best performing kernels are guar-
anteed to survive to the next generation. The surviving kernels
exchange some of their parameters in a manner similar to DNA,
and seed the next generation of kernels. While the specifics of the
algorithm and the translation of parameters to kernels are obscure
TC implementation details, we control a few hyperparameters. For
most kernels, we set the population size to 300, we guarantee the
survival of 10 “elites” per generation, and we run the kernels for 5
generations. In the case of CONV1, which is standard convolution,
we only use a population of 100. PRIMARYCAPS CONVOLUTION

(PYTORCH) failed to run in the autotune system. We attribute this
to the library’s alpha state.

We use a population of 300 because we found repeated initial-
izations of the standard population of 100 resulted in different lo-
cal optima for kernel performance. By increasing the population,
we can approximate many smaller repeated trials.

5. Benchmarking
There are several implementations of capsule networks that

replicated the state of the art MNIST performance of [10] in Py-
Torch, but as described in Section 3.1, we compare to the Gram.AI
implemention [5]. To ensure a fair comparison, we control for any
differences in our implementation:

Hyperparameters. Many capsule network-specific parame-
ters need to be held equal across tests between implementations.
This includes the layers and sizes of the layers of the network,
batch size, the number of dynamic routing iterations, and the train-
ing scheme (SGD with same nonzero weight decay and no regu-
larization), so the same number of operations are performed.

PyTorch-specific details. We use the same parameters to ini-
tialize the DataLoader, which gets the MNIST dataset from
disk into memory. Since this is a performance benchmark, we
also ensure the usage of cuDNN and enable PyTorch’s internal
benchmarking-based kernel selection to give it the fastest speed
possible without Tensor Comprehensions.

5.1. Measurement
For the purposes of accuracy and relevance, we measure the

time to completion of training one epoch (iterating through, thus
benchmarking the combined forward/backward pass), to assess
improvements in training efficiency. We also measure the time to
completion for inference through an entire epoch, which focuses
just on the forward pass. This will be evaluated at varying batch
sizes. These are the most important metrics because they reflect
the end to end real cost of the two main operations one does with
neural networks. That’s why we choose not to separate the back-
ward pass by itself, in addition to the fact that its timings are harder
to correctly isolate.

5.2. Equivalence of optimizations
We made sure to verify that all PyTorch and TC optimizations

were functionally equivalent to the reference implementation and
still represented more efficient implementations/kernels.

To test for equivalence for kernels involving network parame-
ters, we transferred weights between a Gram.AI implementation to
our own model, then ran a forward pass of a dataset batch through
both networks. We compared the maximum absolute difference
in the output tensors and verified that it was negligible and at-
tributable to floating point precision limitations. In this case, we
looked at both the direct probability outputs given by vector mag-
nitude as well as the reconstructions of the CapsNet decoder com-
ponent (not described here).

For kernels that did not involve network parameters, we also
conducted smoke tests with random input tensors to verify the
outputs were the same across Gram.AI component, our PyTorch
component, and sometimes the corresponding TC component.

We note that training is not sufficient to show correctness, as
it is likely that networks with many parameters on MNIST will
achieve high accuracy even with subtle implementation errors.

6. Experiments
In this section, we conduct a series of experiments to evalu-

ate the performance effects of our optimizations, including our
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Opt. Dir. Batches Ref Ours Speedup
CONV1 f 100k 75.2 64.8 1.16
U CALC f 50 0.872 1.67 0.52
U CALC f/b 50 2.73 5.75 0.47
S CALC f 1k 0.401 0.080 5.01
S CALC f/b 1k 3.38 27.2 0.12
B CALC f 1k 2.46 0.579 4.25
SQUASH f 100k 6.75 6.11 1.10
TSQUASH f 100k 43.7 6.48 6.74

Table 1. TC optimization results. Direction specifies if timing
is performed for just forward or for both forward and backward
passes. Times for reference and TC-optimized operations repre-
sent the time to perform the operation on the specified number of
batches.

Opt. Train Test Speedup
GRAM.AI 0.203 0.092 1.00 / 1.00
U CALC (PYTORCH) 0.174 0.066 1.17 / 1.40
ABOVE + SOFTMAX 0.124 0.045 1.64 / 2.07
ABOVE + PCAPS CONV 0.093 0.032 2.19 / 2.87
ABOVE + TC OPTS — 0.024 — / 3.79

Table 2. Overall optimization results showing performance im-
provements in training and test times. Times are seconds/batch
of 100 calculated by taking the average across 5 epochs for train
and 10 epochs for test, excluding 1 epoch of warmup time in both
cases. All times are adjusted by subtracting 0.004 seconds repre-
senting the amount of time to load the data. The two values in the
Speedup column represent training/testing speedups.

performance-optimized TC kernels for the previously mentioned
tensor operations and PyTorch optimizations over our reference
implementation [5].

We used a GTX 1080 Ti, and made sure to also tune our ker-
nels on the same type of GPU. Disk speed was not a factor in
our experimental calculations since MNIST is loaded entirely to
memory. For all end to end experiments for overall inference and
training performance, we ran an epoch to warm up, then 5 epochs
for training and 10 epochs for inference benchmarks. We used
the Anaconda distribution of Python 3.6 and PyTorch 0.3.1 with
cuDNN 7. We acknowledge that benchmarks on other GPUs or on
other versions of cuDNN may have achieved different results.

6.1. TC optimizations
Table 1 shows the performance effects of the autotuned TC ker-

nels on the tensor operation times when compared to the same op-
erations without TC optimizations in our implementation (called
Ref in the table). Note that U CALC represents the best perform-
ing kernel of the 24 permutations for the U CALC (TC) operation.
Some of our TC kernels show clear improvements over existing
kernels while others are not as efficient. We can clearly see that
the two backward kernels generated by TC for U CALC (TC) and
S CALC are not as efficient as existing cuDNN kernels, taking ap-
proximately 2X and 8X longer respectively. In general, we found
that TC support for backward passes to be less complete than for

forward optimization. Many standard operations such as convo-
lutions cannot have their backward pass expressed easily or at all
in TC, and the kernel generation for backward passes is largely
inferior to default kernels even for non-standard high-dimensional
tensor operations.

In addition to having a slower backward pass, U CALC (TC)
is also approximately twice as slow in the forward pass as the
baseline kernel. This suggests that the existing batch matrix-
vector multiplication optimizations in cuDNN are applicable to
this higher dimensional batch matrix-vector multiplication and so
TC is unable to achieve better performance. It in fact achieves sig-
nificantly worse performance. This may also be attributable to the
current lack of implementations for some CUDA optimizations in
TC that would be implemented in cuDNN.

CONV1, S CALC, B CALC, SQUASH, and TSQUASH all dis-
play performance increases in the forward pass, with S CALC, B
CALC, and TSQUASH showing particularly dramatic speedups of
5.01X, 4.25X, and 6.74X respectively. These 3 kernels and the
CONV1 kernel all take advantage of layer fusion which is likely
the cause of their high performance compared to cuDNN kernels.
CONV1 fuses convolution and ReLU, S CALC and B CALC both
fuse element-wise multiplication with summation along a dimen-
sion, and TSQUASH fuses the squash operation with transposi-
tion. Since summation along a dimension and transposition re-
quire more complicated memory access logic than element-wise
ReLU, it is understandable that the speedups generated by TC ker-
nels are far higher for B CALC, S CALC, and TSQUASH than
CONV1. Additionally, CONV1 as a standard convolution fol-
lowed by ReLU is likely more optimized by cuDNN than the other
higher-dimensional tensor operations.

SQUASH does not benefit from this concept of layer fusion as
it writes to an intermediate variable and so has no obvious theo-
retical benefits over the PyTorch implementation, and yet it is still
better. The 1.10X speedup for SQUASH is the lowest out of all our
beneficial optimizations and is likely just due to TC finding a bet-
ter standard kernel for this novel operation than cuDNN provides.
One explanation is that cuDNN kernels may only have a few tem-
plated versions that do not fit CapsNet dimensions just right.

Initially when testing the TC kernels, we ran each for 50
batches and found them all to perform worse than the reference
implementations. It was only when running them on more batches
that we found performance benefits. We believe the constant costs
associated with TC are higher than the reference implementations
and thus running times with small batches are dominated by these
constant factors, leading to deceptively low performance gains. An
example of a constant factor associated with TC kernels and not
with baseline kernels is the time required to load the kernel from
the cache on disk.

6.2. Full network optimization
In addition to optimizing and analyzing individual tensor op-

erations, we also measured the performance gains for the whole
network training and testing times as a result of both our PyTorch
and TC optimizations. Table 2 displays the speedups achieved by
the addition of different optimizations. The effects of all optimiza-
tions are are calculated through accumulated application, applied
in the order: U CALC (PYTORCH), SOFTMAX, PCAPS CONV, and
TC OPTS.
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The PyTorch optimizations all show significant speedups over
reference [5], confirming our beliefs that the original implemen-
tations were inefficient. In particular, it is interesting to note how
inefficient implementations of standard tasks such as matrix mul-
tiplication order and softmax can lead to significant performance
gains with our corrections to these two components yielding a
1.64X speedup in training time and 2.19X speedup in test time.
The addition of the PRIMARYCAPS CONVOLUTION optimization,
converting the concatenation of repeated convolutions to the trans-
position and reshaping of a single convolution, also had large per-
formance benefits further speeding up training by 33% and testing
by 39%.

When calculating the effects of TC optimizations on the over-
all network training and testing time we decided to include them
all at once as we have already analyzed their individual operation-
scope speedups and wnat to evaluate the efficacy of TC as a whole
on network inference time. In the table, TC OPTS includes the
TC-generated forward pass kernels for CONV1, S CALC, B CALC,
SQUASH, and TSQUASH since these are the kernels that showed
performance gains. Note that there are no training times when in-
cluding TC OPTS as they lack backward pass kernels, or the back-
ward kernels are too slow. In total, these TC optimizations boost
performance by 24.3% compared to our implementation with only
PyTorch optimizations, yielding an overall network inference time
speedup of 3.79X when compared to the reference implementation
[5].

7. Conclusion
In this paper we sought to improve upon existing implementa-

tions for the CapsNet architecture by utilizing automatically opti-
mized TC kernels to speed up high-dimensional tensor operations.
Our model, including both PyTorch optimizations and TC opti-
mizations, achieves a 2.2X speedup in training and a 3.8X speedup
in inference when compared to our reference implementation. We
also discovered that TC optimizations are particularly effective
when taking advantage of layer fusion, combining multiple Py-
Torch operations into a single TC operation, and had the ability
to accelerate performance by over 6X for some operations. Fur-
thermore, we found that while TC shows significant performance
boosts for inference, its ability to optimize kernels for the back-
ward pass still lags behind cuDNN and occasionally fails alto-
gether with the gradients of certain operations unable to be ex-
pressed within the current extent of TC semantics.

7.1. Future work
There are many potential directions for future work building

off the results of this paper. We discovered a 4th implementation
inefficiency in our reference implementation in the use of B in
the dynamic routing algorithm. While B is supposed to be imple-
mented as a BA×CA×RO tensor, the reference implementation
defines it as a BA×CA×RO×C2 tensor, unnecessary replicating
redundant information 16 times along the C2 dimension. We be-
lieve removing this redundancy would yield performance benefits
but were unable to do so in this paper due to time constraints.

In order to gain more insight into the efficient kernels generated
by TC it may be useful to examine the actual C++ code for the
CUDA kernels generated by TC. We found that TC has an option

to print out the corresponding C++ code for its CUDA kernels but
felt that analyzing them was beyond the scope of this paper.

This paper also acts as a proof of concept that TC can be used to
optimize high-dimensional tensor operations which naturally leads
into the exploration of using TC in similar architectures. One po-
tential use case might be delving into 3D capsule networks where
it is possible that TC optimizations may show even more signifi-
cant performance boosts compared to cuDNN kernels due to the
added complexity of the additional dimension.
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