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Abstract

Visual-Based Localization (VBL) is the computer vision
task of retrieving the pose of a camera given a query image
that the camera has captured. VBL has received increased
attention as a research subject due to heavy reliance of im-
portant applications, such as augmented reality, on location
knowledge. This paper overviews feature representations,
evaluation metrics, and datasets commonly used in VBL lit-
erature and surveys recent state-of-the-art methods in VBL,
while examining the trade-off between scale and precision
in VBL methods.

1. Introduction
The human brain is adept at inferring location and view-

point from visual information. Looking at a picture of the
Eiffel Towel, we can instantly recognize that the picture was
taken in Paris and predict what viewpoint the picture was
taken from. Visual-Based Localization (VBL) is the com-
puter vision task of retrieving the pose, referring to position
and possibly orientation, of a camera given an image the
camera has taken. An example of a VBL task is to geo-tag
outdoor images in a photo gallery without using GPS. Var-
ious other names are used in place of VBL in literature. In
this survey, as in [21], VBL covers terminologies such as:
Image-based Localization, Visual Localization, Structure-
Based Localization, Visual Geo-Localization, Camera Re-
localisation, Image-Based Pose Estimation, and all other re-
arrangements of these terms.

VBL has been receiving increasing research attention
over the past decade. Important applications, such as aug-
mented reality, indoor navigation, self-driving vehicles, 3D
reconstruction, and more, are heavily reliant on location
knowledge. GPS-like localization systems alone cannot
provide the level of accuracy that the aforementioned ap-
plications demand. GPS-like localization systems perform
especially poorly in crowded urban environments. Further-
more, the supply of large geo-localized image database and
the proliferation of embedded visual acquisition system,

such as smart-phone camera, in recent years reshape what
is possible to achieve for VBL methods.

Despite the increasing attention VBL has received as a
research subject, there is a lack of surveys on this particular
computer vision task. This paper serves to fill that void.

This survey focuses on systems designed for city-scale
localization as it concerns the most VBL applications. In
section 2, we look at other existing VBL surveys and how
they differ from our paper in terms of topics covered.

Central to all computer vision tasks is visual data repre-
sentation. There are various data types such as point, patch,
and geometric in VBL. Picking the right data representa-
tion, or combination of representations, can help overcome
challenges in VBL like viewpoint and illumination changes
and make systems more robust to environment appearance
changes over time. We take a deeper look at different VBL
data representations in section 3.

We examine various VBL datasets in sectin 4 and eval-
uation metrics in section 6. Then, we discuss current state-
of-the-art VBL methods in section 4 and categorize them
in terms of indrect and direct localization methods, which
excel in scale and precision, respectively.

The trade-off between scale and precision is central to
the VBL narrative, currently. In section 7, we examine fu-
ture trends that could potentially lead to harmony between
scale and precision while improving performance in both
areas simultaneously.

2. Related Work

We compare and contrast our work to existing VBL
surveys and briefly discuss a different task, Visual Place
Recognition, which has methods that intersect with ones in
VBL.

2.1. Existing Surveys

[6] presents several papers on VBL and classify them
depending on the environment for which the particular
method acts on. They divide environment criterion into
three classes:
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• Global: unrestricted visual-based localization at the
planet scale

• City-Scale: Visual-based localization in urban envi-
ronments

• Natural: Visual-based localization in non-urban envi-
ronments

VBL systems for different types of environment demand
different data representations and act on different datasets.
In contrary to [6], our paper primarily focuses on city-scale.

[29] creates a selection of recent articles that help paint
the larger landscape of VBL. They organize the articles
in terms of three categories: data-driven geo-localization,
semantic reasoning based geo-localization, and geometric
matching based geo-localization. We present VBL methods
in section 4 in a similar manner.

[21] is a survey that is most similar to ours. They simi-
larly focus on city-scale VBL methods. However, we sur-
vey different and more recent articles and highlight VBL
systems that generalize well on the mobile platform.

2.2. Visual Place Recognition

Visual Place Recognition is a roboticist problem that
captures the visual ability of a human or robot to recognize
and already visited place [18].Visual Place Recognition and
VBL differ in goals. While Visual Place Recognition is in-
terested in deciding if a given place have already been seen,
VBL produces an output of position and possibly orienta-
tion of the visual acquisition system. Nevertheless, methods
in Visual Place Recognition share similarity with methods
in VBL. Studying approaches in Visual Place Recognition
can give a better panorama of methodolgies involved in lo-
calization process with visual data.

3. Data Representation
We represent visual data with features. Features should

incorporate as much discriminant information as possible
and should be fast to compute and compare. We group vi-
sual data representation into local, global, and hybrid fea-
ture types.

3.1. Global Features

Description of global features considers the image as a
whole and produces a high dimensional output. Advances
in Convolutional Neural Networks (CNN) greatly increases
efficiency of computing global descriptor.

3.1.1 Hand-crafted features

The most common hand-crafted global descriptor is GIST,
described in [20]. GIST uses a set of perceptual dimensions,
such as roughness, openness and ruggedness, that represent

the dominant spatial structure of a scene and estimate these
dimensions reliably using spectral and coarsely localized
information.

Specific information regarding object shape is not re-
quired for localization problems. Modeling a holistic repre-
sentation of the scene can also inform about its associated
camera pose.

3.1.2 Learned features

With the rise of deep learning, learned feature becomes in-
creasingly popular in localization research. For example,
[2] demonstrates that deep learning has led to state-of-the-
art techniques in image retrieval for urban scenes using
learned features. Extracting learned features often involves
extracting the output of a specific convolutional layer in a
CNN trained for image classfication. [4] shows that CNN-
generated descriptors used as global features are lightweight
and can be computed efficiently.

3.2. Local Features

Description of local features occur at pixel level among
a local neighborhood of points in an image. Local features
have been shown to be well suited to matching and recogni-
tion as well as to many other applications as they are robust
to occlusion, background clutter and other content changes.
The difficulty is to obtain invariance to viewing conditions.

3.2.1 Point features

Selection of points features are dependent on scale, ori-
entation, illumination invariance, computational cost, and
descriptor vector dimension. The most used point feature
in VBL is the Hessian-affine [19] detector combined with
SIFT [17] descriptor.

3.2.2 Geometric features

Geometric features refer to primitive geometric shapes and
include semantically meaningful information. For example,
[2] shows that vertical lines can act as descriptors to rep-
resent buildings in urban environments. Geometric data is
often used in conjunction with 3D data. For example, geo-
metric features such as normal vectors and planar surfaces
are often used for tracking and localization in augmented
reality.

3.2.3 Point features with geometric relations

A limitation to point features in an image is the lack of ge-
ometric consistency. [16] proposes a solution to this lim-
itation through geometric association of points. Geomet-
ric relation between point features can help eliminate false
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matches and outliers in image retrieval methods that use
feature-based similarity association algorithms.

3.3. Hybrid Features

Hybrid features consist of features that are neither local
nor global and features that combine several types of de-
scriptors.

3.3.1 Patch features

Patch features consider regions of interests in an image. For
example, [23] uses a region proposal network to extract re-
gions of interest. To generate region proposals, they slide
a small network over the convolutional feature map output
by the last shared convolutional layer. This small network
takes as input an n × n spatial window of the input convo-
lutional feature map. Each sliding window is then mapped
to a lower-dimensional feature.

3.3.2 Combined features

[5] uses an approach to pair various descriptors in order to
increase the result of the retrieval step depending on the tar-
geted dataset.

4. Datasets
This section examines datasets that are used to measure

and compare existing and novel approaches to VBL. There
are two main types of datasets: Image-based datasets and
stucture from motion (SfM) datasets.

For image-based datasets, we discuss the Google Maps
Street View dataset, the IM2GPS dataset, the YFCC100M
dataset, the San Francisco Landmark dataset, and the
Alps100K dataset.

For SfM datasets, we discuss the Rome16K dataset, the
Dubrovnik6K dataset, the Quad dataset, the Landmark 3D
dataset, and the Cambridge Landmarks dataset.

4.1. Image-based datasets

The Google Maps Street View dataset in [30] contains
102K images taken from the Google Maps Street View site.
The images capture scenes from Pittsburgh, PA and Or-
lando, FL. The dataset contains full 360 degree panoramic
images with distance of about 12m between consecutive lo-
cations.

The San Francisco Landmark dataset in [8] is a database
containing 1.7 million images of buildings in San Francisco
with ground truth labels, geo-tags, and calibration data. The
dataset also includes a difficult query set of 803 cell phone
images taken with a variety of different camera phones. The
generation process utilizes vehicle-mounted cameras with
wide-angle lenses to capture spherical panoramic images.

For all visible buildings in each panorama, a set of overlap-
ping perspective images is generated. The dataset is created
with the intention of facilitating further research in land-
mark recognition with mobile devices.

YFCC100M in [25] is a dataset with 100 million images
and distributed via Amazon AWS so that it is public acces-
sible. Of the 100 million images in YFCC100M, there are
exactly 48, 366, 323 photos and 103, 506 videos that have
been annotated with a geographic coordinates, either man-
ually by the user or automatically via GPS. The annotated
images and videos are crowd-sourced and cover major cities
including London, Paris, Tokyo, New York, San Francisco,
and Hong Kong. Overall, the dataset spans 249 different
territories in the world.

The IM2GPS dataset in [11] contains roughly 6 million
geo-tagged images downloaded from Flickr. The dataset
is generated by searching images with both GPS coordi-
nates and geographic keywords, which has a higher like-
lihood of being accurately geo-located and visually useful
data than images with one or none of the two attributes.
The dataset averages 0.0435 pictures per square kilometer
of Earth’s land area, but distribution skews heavily towards
places where people live or travel. Query images are likely
to come from the same places the database images cover.

The Alps100K dataset in [7] contains nearly 100K an-
notated outdoor images from mountain environments. An-
notations include GPS coordinates, elevation, and EXIF if
available. The images exhibit high variation in elevation,
ranging from 0 to 4782m, as well as in landscape appear-
ance. The images also span all seasons of the year. The
database is generated by first creating a list of all hills and
mountain peaks located in the seven Alpine countries, then
querying the list on Flickr.

4.2. SfM datasets

The Rome16K and Dubrovnik6K datasets in [15] con-
tain 3D reconstructed models of some of the most notable
landmarks in Rome and Dubrovnik. The suffix of each
dataset indicates how many images are used to generate the
corresponding SfM models. Specifically, the Rome dataset
has 3D models for 69 different sites and have a total of
4, 312, 820 3D points generated from images taken by dis-
tinct cameras. The Dubrovnik dataset only has 3D model
for 1 landmark but contains 2, 208, 646 million 3D points.

The Landmark3D dataset in [10] provides a collection
of web images and 3D reconstructed models for research
on landmark recognition. It serves as a useful benchmark
for evaluating and comparing different methods meaning to
operate on 3D models. The dataset is evolving and currently
contains 3D models for 25 landmarks generated by operat-
ing SfM on 45, 180 web images. Each 3D reconstructed
model is generated from about 1.4K to 2K images. A esti-
mate of 2.7 million total 3D points are included in the 3D
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models. In addition, there are also 58 million SIFT features
registered to the 3D models, which can be used to evaluate
2D-to-3D localization methods.

The Cambridge Landmarks dataset in [13] contains 12K
images with full 6-DoF camera poses generated using SfM.
The dataset provides data to train and test pose regression
algorithms in a large scale outdoor urban setting. The col-
lected data contain urban clutter such as pedestrians and ve-
hicles and have varying lighting and weather conditions be-
cause the images capture scenes at different points in time.
Train and test images are taken from distinct walking paths
and not sampled from the same trajectory making the re-
gression challenging.

The Quad dataset in [9] contains a 3D reconstructed
model of the Arts Quad at Cornell University. This dataset
also contains 6, 514 images of the Arts Quad. Of the 6, 514
images, 5, 000 of them are recorded by an iPhone 3G cam-
era and geo-tagged, while 348 images have precise GPS co-
ordinates measured using service-quality differential GPS
that can be used for ground truth during training and evalu-
ation.

5. Evaluation Metrics

In this section, we examine three evaluation metrics,
commonly employed in VBL literature: Percentage of lo-
calization error, top-k candidates, precision/recall.

5.1. Percentage of localization error

The percentage of localization error metric measures the
number of queries that are localized with error of a certain
threshold. It is a straightforward way to illustrate how ac-
curate a particular localization method is by showing the
number of query images in different error ranges. Plotting
localization error, referring to distance bewteen estimated
location abd ground truth, against percentage of images that
are localized within the same error range is a popular visu-
alization to perform. Comparing performance of different
localization methods is intuitive using this metric.

5.2. Top-k candidates

When a localization method returns an ordered list of
candidate locations for each query image, the top-k candi-
dates metric counts how many query images are localized
correctly within k top-ranked candidates. Normally, k is set
to 10 or 1%. If database images contain geo-tags, it is com-
mon practice to decide that a query image is correctly lo-
calized if 1 out of k candidates lies inside a tolerance radius
circle. Plotting a variable number of k candidates against
the fraction of correctly localized images is a popular visu-
alization for this evaluation metric.

5.3. Precision/Recall

Precision and recall are standard metrics used for evalu-
ation of classification and retrieval methods. The standard
formula for precision is

Precision =
True Positive

True Positive + False Positive

and the standard formula for Recall is:

Recall =
True Positive

True Positive + False Negative
.

Image retrieval is a problem commonly solved as part of
a VBL problem. Precision is a particularly useful metric
that indicates the percentage of query images that are cor-
rectly localized within a certain tolerance.

6. Methods
We present VBL methods using two broad categories:

indirect localization and direct localization. A trade-off be-
tween scale and precision exist between the two categories.
Indirect localization methods take advantage of internet-
scale image databases and provide a coarse camera pose
estimation by solving an image retrieval problem. On the
other hand, direct localization methods regress the precise
6-DoF pose, but often at the sacrifice of area coverage. The
are two main subcategories under direct localization meth-
ods: feature-based and learning-based methods.

6.1. Indirect Methods

Indirect methods generally cast the localization task as
an image retrieval problem. It provides a coarse camera
pose estimation for the query image, but runs efficiently and
has large area coverage. Generally, there are three steps
involved in indirect localization methods. The first step
is generating a numeric description, or descriptor, for the
query image and for each database image which contains
spatial information, such as GPS coordinates. Then, in the
second step, indirect methods perform similarity associa-
tion between query image and database images through de-
scriptors. The third step involves post-processing and se-
lecting the best-matched candidate.

[30] presents a classical indirect method that performs
localization using a structured data set of about 100K im-
ages downloaded from the Google Maps Street View site.
The system finds the camera location of a query image with
a precision comparable to hand-held GPS devices. For fea-
ture descriptor, they use SIFT. They index the SIFT descrip-
tors of the detected SIFT interest points in the database im-
ages using a tree. To localize a query image, they com-
pute the SIFT descriptors for the query image and query the
aforementioned tree. They use a novel GPS-tag-based prun-
ing method to remove less reliable descriptors. Then, they
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utilize a smoothing step with an associated voting scheme
to allow each query descriptor to vote for the location its
nearest neighbor belongs to. A parameter called Confidence
of Localization, which is based on the Kurtosis of the dis-
tribution of votes, is defined to determine how reliable the
localization of a particular image is.

In addition to localizing a single query image, [30]
also proposes a novel approach to simultaneously local-
ize groups of images in a hierarchical manner. First, they
attempt to localize each image in the group individually.
Then, the rest of the images in the group are matched
against images in the neighboring area of the found first
match. The final location of the group is determined based
on the Confidence of Localization parameter. The proposed
image group localization method can deal with very unclear
queries which are not capable of being localized individu-
ally.

The approach used by [30] can efficiently localize the
camera pose using a captured image by querying a descrip-
tor tree built during training time. This method can scale
smoothly with more input training images, annotated with
GPS coordinates. However, this system only obtains a pre-
cision comparable to hand-held GPS devices.

[9] proposes an indirect method that takes advantage of
significantly larger datasets. Rather than using merely 100K
images downloaded from the Google Maps Street View site,
Crandall et al. study the indirect localization problem by
classifying landmarks using a much larger dataset of 30 mil-
lion images. Given a query image, they localize its camera
by classifying the query image as a known landmark, then
retrieving the relevant coordinates. The dataset and cate-
gories of landmarks are formed automatically using geo-
tagged photos from Flickr by looking for peaks in the spa-
tial geo-tag distribution corresponding to frequently pho-
tographed landmarks. To handle such a large scale dataset,
they use a multi-class SVM classifier using SIFT-based bag-
of-word features to classify query images. Through exten-
sive experiments, they demonstrate that their system has
a classification accuracy comparable to that of humans on
the same task. They also find that using a structured SVM
to classify the stream of photos taken by a single camera,
rather than classifying individual photos, yields dramatic
improvement in the classification rate. Streams of photos
provide temporal context and is just one kind of poten-
tial contextual information that the system can extract from
photo sharing sites. When image-based classification re-
sults are combined with text features from tagging, classifi-
cation accuracy can be hundreds of times the random guess-
ing baseline.

The results of [9] demonstrate the potential for indirect
localization using Internet-scale image collections and large
labeled datasets. The drastic improvement in accuracy cre-
ated by incorporating other inputs foreshadow our conclu-

sion that to balance scale and precision, VBL need to con-
sider additional forms of inputs. The aforementioned two
systems are extremely scalable but only consider indirect
localization of outdoor images.

With localization of indoor images in mind, [14] detail
a marker-based indoor navigation system. An alternative
method to the proposed system is to establish indoor loca-
tions through signal strength of radio frequency (RF) bands
of the IR echo distance as in [28]. Such RFID-based sys-
tems characterize locations by measuring signal strength us-
ing an RF sensor. Extending upon the idea, the proposed
system characterizes a location through a marker, color in-
formation, and prior knowledge. Each marker has a black
and white colored square with a unique pattern. Topograph-
ical information of the indoor environment is established
using prior knowledge of location and is represented in the
location model implemented using a hierarchical tree struc-
ture. Kim et al. use a wearable mobile PC with camera
to obtain an image sequence, which is then sent to remote
PCs for processing. The remote PCs perform marker detec-
tion, image sequence matching, and location recognition.
To improve performance, they use an adaptive threshold-
ing method to detect markers under illumination changes
and use the location model to reduce execution time during
image sequence matching. The system achieves an aver-
age location recognition success rate of 89%. Compared to
RFID-based systems, the proposed system is a more eco-
nomical solution and is not limited by signal propagation
and multiple reflections.

Contrary to most indirect methods, the system proposed
in [14] does not scale well. Their system functions only
when pre-constructed markers are placed in indoor environ-
ments. Furthermore, such a system requires constant com-
munication between a mobile device and remote servers.
Latency problems can seriously affect performance. Never-
theless, the system proposed by Kim et al. is one of the first
attempts to solve the indoor navigation problem.

6.2. Direct Methods

Unlike indirect methods, direct localization methods
compute the precise 6-DoF camera pose, but often times
sacrifice efficiency and area coverage. Direct methods re-
trieve the absolute camera pose of a query image according
to a known representation, which is pre-generated by map-
ping modules such as SfM or SLAM.

We first take a look at methods that generate a 3D repre-
sentation of space using SfM. Then, we look at systems that
computes absolute pose through feature-based 2D-to-3D
matching. Lastly, we examine end-to-end learning-based
localization systems.
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6.2.1 Structure from motion

SfM is a time-consuming task. [27] proposes a method to
reduce time consumption of SfM to near linear. Time com-
plexity of incremental SfM is often known as O(n4) with
respect to the number of cameras. Wu proposes a novel
bundle adjustment strategy that provides a good balance be-
tween speed and accuracy. He shows that SfM requires only
O(n) time on most major steps through extensive experi-
ments. The proposed method maintains accuracy by regu-
larly re-triangulating feature matches that initially failed to
triangulate.

Not only time consuming, SfM is also computationally
expensive. [1] is a classical paper that discusses 3D scene
reconstruction using SfM techniques. Agarwal et al. recon-
struct 3D scenes from extremely large collections of pho-
tographs found by searching a given city (e.g., Rome) on In-
ternet photo sharing sites, such as Flickr. 3D reconstruction
is computationally expensive. Hence, the system focuses
on maximizing parallelism at each stage in the pipeline
and minimizing serialization bottlenecks. They experiment
with a variety of alternative algorithms at each state of the
pipeline and report on which ones work best in a parallel
computing environment. The paper achieves reconstruct-
ing cities consisting of 150K images in less than a day on a
cluster of 500 compute cores.

6.2.2 Feature-based

To localize after generating a 3D model, one approach is to
find correspondence between 2D features of a RGB query
image and 3D points in the reconstructed model. [24] pro-
poses such a system designed for 2D-to-3D matching. They
use a direct matching framework based on visual vocabu-
lary quantization and a prioritized correspondence search.
In the pipeline, the system first computes the 2D features
of an input RGB image. Then, it associates the features in-
dividually with visual words pre-computed during training
time. Since the 3D points in the reconstructed model are
generated from RGB images, the 3D points are also asso-
ciated with the visual words. The system performs linear
search to find the best correspondence between the input
features and the points associated with the visual words. At
last, the system computes an absolute pose using Random
sample consensus (RANSAC).

Extending direct localization to ”worldwide” scale, [15]
addresses the problem of determining where a photo was
taken by estimating a full 6-DoF-plus-intrinsics camera
pose with respect to a very large geo-registered 3D point
cloud. Their method directly establishes correspondence
between 2D features of a query image and 3D points in a
point cloud created by running SfM on over 2 million im-
ages. Their dataset has over 800K reconstructed images and
more than 70 million 3D points, covering hundreds of dis-

tinct places around the globe. They propose two new tech-
niques. The first is the use of statistical information about
the co-occurrence of 3D model points in images to yield an
improved RANSAC scheme. The second is a bidirectional
matching algorithm between 3D model points and image
features.

Implementing a direct localization system that is more
invariant to appearance changes than previous work, [3] de-
scribes a system that matches a given architectural drawing,
painting, or historical photograph to a 3D model of the cor-
responding site. The task is difficult as the appearance and
scene structure in 2D depictions can be very different from
the appearance and geometry of the 3D model. Factors such
as specific rendering style, drawing error, age, lighting or
change of seasons associated with the input image create
immense challenges for the task. In addition, a hard search
problem exists. The number of possible alignments of the
input image to a set of 3D models from different architec-
tural sites is very large. They develop a compact repre-
sentation of complex 3D scenes to address this hard search
problem. 3D models of several scenes are represented by a
set of discriminative visual elements that are automatically
learned from rendered views. Through experiments, the pa-
per shows that visual elements learned in a discriminative
fashion can reliably find its match despite large variations
in rendering style and structural changes of the scene. The
proposed approach can identify the correct architectural site
as well as recover an approximate viewpoint of historical
photographs and paintings with respect to the 3D model of
the site.

6.2.3 Learning-based

A classical deep learning pose regression paper, [13]
presents a robust and real-time monocular 6-DoF relocaliza-
tion system. Their proposed system trains a CNN to regress
the 6-DoF camera pose from a query RGB image in an end-
to-end manner. No additional engineering or graph opti-
mization is needed. The system operates for both indoors
and outdoors in real time, and only takes about 5ms per
frame to compute. Furthermore, it obtains approximately
2m and 3-degree accuracy for large scale outdoor scenes
and 0.5m and 5-degree accuracy indoors. They demonstrate
their concept using an efficient 23 layer deep CNN and
show that CNNs can be used to solve complicated out of im-
age plane regression problems. Specifically, they leverage
transfer learning from large scale classification data. The
system, called PoseNet, localizes from high level features
and is robust to difficult lighting, motion blur, and different
camera intrinsics where point based SIFT registration fails.
At last, they show how the pose feature that is produced
generalizes to other scenes allowing them to regress pose
with additional training examples.
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PoseNet can generate a more precise output than what
hand-held GPS devices can achieve. It also runs efficiently
at test time because of its end-to-end nature. The bottleneck
for PoseNet is training data. For every new place, there
needs to be a complete coverage of the area using images
that are labeled with precise camera poses. For the system
to function, the distance gap between images needs to be
small. Generating training images through crowd-sourcing
is often times insufficient under such a constraint. For areas
that are not covered by training images, the system would
simply produce a false output, because learning does not
help the neural network to localize unknown areas.

Most learning-based localization systems do not fine-
tune CNN models, however [22] shows that fine-tuning can
improve localization results. Specifically, [22] proposes an
unsupervised fine-tuning of CNN for image retrieval and
uses this fine-tuning method to achieve state-of-the-art lo-
calization results for Oxford buildings and Paris datasets.
The system bypasses the dense manual annotations nec-
essary for CNNs by using a SfM generated 3D model to
guide the selection of training data for CNN fine-tuning.
They show that both hard positives and hard negative ex-
amples enhance the performance in image retrieval task by
enhancing the derived image representation. Compared to
previous supervised approaches, the variability in training
data selected from 3D reconstructions shows superior per-
formance.

Beyond fine-tuning CNNs for localization, there are also
Learning-based localization methods that utilize deep learn-
ing networks besides CNNs. [26] proposes a combined
CNN and LSTM architecture to regress camera pose for
both indoor and outdoor scenes. The purpose of CNN is
to learn suitable feature representations for localization that
are robust against motion blur and illumination changes.
LSTM, on the other hand, operates on the CNN output to
capture contextual information. The combined architecture
leads to improvement in localization performance by en-
larging the receptive field of each pixel. Walch et al. present
a new large-scale indoor dataset with ground truth generated
by a laser scanner. Experimental results show that the sys-
tem can localize images in hard conditions such as in the
presence of mostly textureless surfaces

7. Future Trends

We predict four future trends in the research area of
VBL: greater availability of geometric data, more focus on
direct localization methods, increasing usage of deep learn-
ing systems in VBL, and growing interest in using addi-
tional inputs to balance and improve VBL precision and
scale.

7.1. Availability of geometric data

As shown in [27] and [1], SfM is becoming increas-
ingly efficient and less computationally expensive. As geo-
tagged images on Internet photo-sharing platforms continue
to grow, the number of 3D models for landmarks world-
wide would proliferate. Furthermore, with the introduction
of mobile phones equipped with depth-sensing camera such
as the Google Tango phone, we are expecting to see more
use of RGB-D data in VBL. RGB-D data can significantly
reduce the complexity of reconstructing 3D models because
of the added depth dimension.

7.2. Focus on direct methods

A greater availability of geometric data would inevitably
lead to a greater focus on improving direct localization
methods. Direct localization methods would also receive
greater attention than indirect localization methods because
of the importance of precision. Applications such as aug-
mented reality or indoor navigation demands high preci-
sion. An error range greater than 10m, commonly seen
in localization results of indirect methods, is unacceptable.
The trade-off between precision and scale would also begin
to fade as availability of geometric data increases, putting
direct localization methods in a more favorable light.

7.3. Deep learning in VBL

CNNs and other deep-learning networks are improv-
ing in performance for most computer vision tasks, and
VBL is no exception to this trend. After the introduction
of [13], a growing amount of literature in VBL now use
a learning-based localization approach. Like learned fea-
tures, learning-based localization systems are efficient and
lightweight. They produce precise results without expen-
sive computations or heavy time consumption. The only
bottleneck for learning-based approaches is training data,
which also translates into a problem of low area coverage.
However, with the increasing availability of geometric data,
there could soon be answers to the training data generation
problem.

7.4. Additional inputs

A important dichotomy exists in VBL, which is the
trade-off between scale and precision. In this survey, we
have examined indirect localization methods and direction
localization methods, which excel in scale and precision,
respectively. The increasing availability of geometric data
may bring a balance to scale and precision. However, in
the mean time, it is important to consider using additional
forms of input to achieve such a balance. For example, [12]
combines inertial measurements, camera sensor data, and
depth data for localization. Furthermore, if mobile phones
have access to accurate heading information, for instance,
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pose estimation can be drastically simpler by disregarding
candidates with the wrong orientation in a direct localiza-
tion system that utilizes 2D-to-3D matching.

8. Conclusion
VBL is a growing research area that can benefit im-

portant applications such as augmented reality and indoor
navigation. We first overview data representations, evalua-
tion metrics, and datasets commonly seen in VBL literature.
Then, we examine specific VBL methods that fall under two
broad categories, indirect and direct, which excel at scale
and precision, respectively. After discussing current state-
of-the-art VBL methods, we analyze future trends in VBL
that would lead to a balance and improvement in scale and
precision.
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