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Abstract

With recent success of activity recognition on video, peo-
ple have increasing interest in video captioning problem
where a sentence (or more broadly speaking a paragraph)
is generated to describe a video clip that captures its vi-
sual semantics. In this paper, we review various methods
of video captioning in the literature, along with benchmark
video captioning datasets and widely used evaluation met-
rics. At the end, we point out several possible future direc-
tions for video captioning problem.

1. Introduction
With recent success of activity recognition on video,

people have increasing interest in advancing video under-
standing further by incorporating more details and more
reasoning in understanding results. Video captioning prob-
lem arises naturally as the very next step where a sentence
(or more broadly speaking a paragraph) is generated to de-
scribe a video clip that captures its visual semantics. Ulti-
mately, we’d like a video captioning method that can selec-
tively narrates what happens in a random video, either short
or long, just like a human does. In this information age
where exploding amount of visual data is generated every
day, video captioning can have many real life applications.
For example, automatic generation of captions for videos
would greatly help users to filter what’s interesting to them
among the sheer number of videos on Youtube. Addition-
ally, video captioning techniques will make videos accessi-
ble to the disabled.

While interesting, generating captions for videos from
open domain is a very complex task for machine. Several
challenges particular to video captioning problem have been
noted in the literature.

First, there are limited video datasets that have accom-
panying text descriptions, because videos are significantly
more difficult and expensive to collect and annotate than im-
ages and captioning is a much more complex and ambigu-
ous task for human workers than, for example, recognition.
Realizing the importance of having datasets right for video

captioning task, some early efforts set off from constructing
datasets for simple settings and closed domains, and further
progress is made by leveraging internet and movie descrip-
tion services to collect data from a wide range of topics and
to scale up. Especially recently several large-scale video
captioning datasets have been proposed enabling deeper
learning models, such as MSR Video-to-Text and Activi-
tyNet Captions.

Second, there is lack of complex models that can cap-
ture the rich spatio-temporal information and dynamics of
video. A video clip can consist of multiple activities which
may or may not be interleaving with each other, and di-
verse dependencies between activities which may or may
not be visually explicit. Such degree of complexity has
rarely been explored in image domain and video activity
recognition tasks. Most of early works treat video caption-
ing as an analogy of image captioning task, where a sin-
gle semantic representation is extracted from a video and is
further sent to language model to generate sentence. This
type of approaches only achieves limited success in short
videos with single major activity, because all the dynamics
of a video gets ignored. Therefore, recent works are pay-
ing more and more attention on ways to exploit temporal
structures of video.

In the following sections, we will first discuss bench-
mark video captioning datasets that have been used in the
literature. The commonly used evaluation metrics for video
captioning task will also be briefly introduced. We will then
dive into discussion of various video captioning methods,
including classical works that approach video captioning
from the perspective of template-based generation, video
retrieval or machine translation, and more recent works
that utilizes hierarchical recurrent neural networks to learn
in varying temporal granularities and that pushes towards
dense captioning .

2. Benchmark Datasets
While video captioning on the first sight poses similar

problem as image captioning, one additional key challenge
faced by video captioning is the scarcity of datasets that
come with rich video descriptions, because videos are sig-
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nificantly more difficult and expensive to collect and an-
notate, not to say the increasing ambiguity of the task of
describing visual content. There have been several classi-
cal benchmark datasets that are widely used in early works,
which enable limited success of video caption generation
via learning-based methods. However, they are usually
small in scale in terms of number of videos and degree
of narrations, and simple in semantics in terms of both vi-
sual and textual content. Until recently, several large-scale
densely annotated video captioning datasets have been de-
veloped in order to fully exploit deep learning in generating
human-level video description.

In the following, we will discuss these classical and
new benchmark datasets for video captioning in details of
their varying data sources, scales and annotations. Figure 1
shows detailed statistics of the datasets.

TACoS Dataset [10], as one of the earliest efforts, con-
tains videos of different activities in the cooking domain in
an indoor environment. The duration of video is preferably
long, usually around magnitude of minutes. Each video is
annotated with both fine-grained activity labels with tem-
poral locations and descriptions with temporal locations by
multiple Amazon Mechanical Turkers. It has a total of
18,227 video-sentence pairs on 7,206 unique time intervals.
TACoS-Multi Dataset is an extension to the dataset with
paragraph description per temporal segment, but the limita-
tion is still the same that the setting is closed-domain and
too simple for learning.

Microsoft Video Description Corpus (MSVD) [2], also
referred as Youtube Dataset in early works, is one of the
earliest open world dataset. It is a collection of Youtube
clips collected on Mechanical Turk by requesting workers
to pick short clips depicting a single activity. As a result,
each clip lasts between 10 seconds to 25 seconds, with quite
constant semantics and little temporal structure complexity.
It has 1,970 videos clips in total and covers a wide range of
topics such as sports, animals and music. Each clip comes
with multiple parallel and independent sentences labeled by
different Amazon Mechanical Turkers in a number of lan-
guages. Specifically for English, it has roughly 40 parallel
sentences per video; resulting in a total number of 80k clip-
description pairs. It has a vocabulary of 16k unique words;
each sentence on average contains 8 words.

Montreal Video Annotation Dataset (M-VAD) [17]
is a large-scale movie description dataset from the DVD
descriptive video service (DVS) narrations. DVS are au-
dio tracks describing the visual elements of a movie, pro-
duced to help visually impaired people. The dataset has
49k video clips extracted from 92 DVD movies. Each clip
is accompanied with a single sentence narration from semi-
automatically transcribed DVS narrations. The vocabulary
usage varies according to genre of the respective movie. It’s
a particularly challenging dataset for video captioning task

due to the high diversity of visual and textual content of
movies.

MPII Movie Description Corpus (MPII-MD) [12] is
another recent large-scale movie description dataset built in
a way similar to M-VAD. It contains around 37,000 movie
clips from 55 audio descriptions (ADs) available movies
and about 31,000 movie clips of 49 Hollywood movies.
Each video clip is equipped with one sentence from movie
scripts and one sentence from DVD descriptive video ser-
vice (DVS). Annotations of dataset are semi-automatically
segmented and manually aligned with clips. Since it has
been manually corrected, the alignment between video snip-
pets and descriptions is more correct in this case than in M-
VAD.

MSR Video-to-Text (MSR-VTT) [20] is a recently re-
leased large-scale video captioning benchmark, and is by
far the largest video captioning dataset in terms of the num-
ber of sentences and the size of the vocabulary. It contains
10k video clips crawled from a video search engine from
20 most representative categories of video search, includ-
ing news, sports etc. The duration of each clip is between
10 and 30 seconds, while the total duration is 41.2 hours.
Each video clip is annotated with 20 parallel and indepen-
dent sentences by multiple Amazon Mechanical Turkers,
which provide a good coverage of the semantics of a video
clip. There are in total 200K clip-sentence pairs with a vo-
cabulary of 29,316 unique words.

ActivityNet Captions [5] is a recently released large-
scale benchmark dataset specific for dense-captioning
events. It contains 20k videos amounting to 849 video
hours. The videos are collected from video search engine,
covering a wide range of categories. On average, each video
contains 3.65 temporally localized sentences, resulting in a
total of 100k sentences. Each sentence covers an unique
segment of the video and describes an event that occurs over
varying span of time. On average, each sentence has length
of 13.48 words, and describes 36 seconds and 31% of its
respective video. The rich annotation enables explicit ex-
ploration of temporal structures.

3. Evaluation Metrics
Video captioning result is evaluated based on correctness

as natural language and relevance of semantics to its respec-
tive video. The following are widely used evaluation met-
rics that concern the aspects.

SVO Accuracy [19] is used in early works to measure
whether the generated SVO (Subject, Verb, Object) triplets
coheres with ground truth. The purpose of this evaluation
metrics is to focus on matching of broad semantics and ig-
nore visual and language details.

BLEU [9] is one of the most popular metrics in the field
of machine translation. The idea is measuring a numerical
translation closeness between two sentences by computing
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Dataset Content
Caption
Source #Videos #Clips

#Sentence
per video Vocabulary

Duration
per video Localization

TACoS [10] Cooking AMTurker 127 7K 2 - 360s X
MSVD [2] Youtube AMTurker - 2K 40 16K 10s

M-VAD [17] Movie DVS 92 49K 1 18K 6s
MPII-MD [12] Movie DVS + Script 94 68K 1 25K 4s
MSR-VTT [20] Open AMTurker 7,180 10K 20 29K 20s

ActivityNet Captions [5] Open AMTurker - 20k 5 - 180s X

Figure 1. Statistics of video captioning datasets. Specifically, ”per video” statistics refers to average numbers; ”localization” refers to
whether the dataset provides temporal localization of caption annotations. For video captioning task, the preferred characteristics of
datasets are large scale, open domain, large vocabulary and long sentence to ensure semantic complexity, long video to ensure visual
complexity, and multiple annotations per video clip so that it is robust to occasional poor annotations.

geometric mean of n-gram match counts. As a result, it is
sensitive to position mismatching of words. Also, it may fa-
vor shorter sentences, which makes it hard to adapt to com-
plex contents.

ROUGE [9] is similar to BLEU score in the sense that
they measure the n-gram overlapped sequences between the
reference sentences and the generated ones. The difference
is that ROUGE considers the n-gram occurrences in the to-
tal sum of the number of reference sentences while BLEU
considers the occurrences in the sum of candidates. Since
ROUGE metric relies highly on recall, it favors long sen-
tences.

CIDEr [9] is originally a metric to evaluate a set of de-
scriptive sentences for a image, which measures the con-
sensus between candidate captioning and the reference sen-
tences provided by human annotators. Therefore, this mea-
sure highly correlates with human judgments. This measure
is different from others in the sense that it captures saliency
and importance, accuracy, and grammatical correctness.

METEOR [9] is computed based on the alignment be-
tween a given hypothesis sentence and a set of candi-
date reference. METEOR compares exact token matches,
stemmed tokens, paraphrase matches, as well as semanti-
cally similar matches using WordNet synonyms. This se-
mantic aspect of METEOR distinguishes it from others. It
is shown in the literature that METEOR is always better
than BLEU and ROUGE and outperforms CIDEr when the
number of references is small.

4. Methods

A good video captioning requires both local and global
understanding, recognizing activities and reasoning depen-
dencies between local activities and context. Each sub-
section below focuses on one methodology of approaching
video captioning problem, and discusses both the backbone
and various variants of it as well as its advantages and limi-
tations, from classical ones to state-of-the-art ones.

4.1. Template-based Captioning

Following the success of image recognition and activ-
ity recognition, one naive approach is to synthesize the de-
tected outputs into a sentence using a template to ensure
grammatical correctness. Template-based language meth-
ods first split sentences into fragments (e.g. subject, verb
and object) following specific rules of language grammar,
and each fragment is associated with detected words (e.g.
objects, actions and attributes) from visual content. Then
generated fragments are composed to a sentence with prede-
fined language template. As a result, the captioning quality
highly depends on the templates of sentence and sentences
are always generated with syntactical structure.

[4] is one of the earliest works that builds a concept hier-
archy of actions for natural language description of human
activities. [13] constructs a CRF semantic role representa-
tion for each video and uses a template model to generate
a sentence. [16] proposes a two-step approach of Highest
Vision Confidence (HVC) model and Factor Graph Model
(FGM). It first obtains confidences on subject, verb, object
and scene elements; then a factor graph model is used to
infer the most likely SVO (subject, verb, object) triplet in
the video; finally it generates sentence based on a template.
Additionally, in the deep joint embedding model of [21],
template is used for its language model to generate sentence
based on SVO triplet.

Although template-based language can generate com-
plete sentences, generated descriptions are very rigid.
Meanwhile, the evaluation is usually limited to narrow do-
main with a small vocabulary, such as TACoS dataset. For
any sufficiently rich domain, the required complexity of
rules and templates makes manual design of templates un-
feasible or too expensive.

4.2. Joint Embedding

Video captioning problem arises as a side product of
video retrieval problem where a video is to be retrieved ac-
cording to given text description. Since multi-model em-
bedding is a common practice to solve video retrieval prob-
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lem, some early works apply joint embedding approach to
video and language for video captioning as well.

The framework of joint embedding consists of three
components: (1) a visual model to map video to repre-
sentation vector, (2) a language model to map text caption
to representation vector, (3) a projection of visual repre-
sentation vector and language representation vector to the
shared space, by minimizing distance between the two pro-
jected vectors. The idea is that the joint embedding space
is semantically continuous and ensures semantically similar
items, regardless of being video or description, are close to
each other. During inference time, an input video is mapped
to a point in the shared space corresponding to a semanti-
cally close sentence description which is further converted
to text in the inverse process of the language model.

There are many possible choices of visual model and lan-
guage model as practiced in the literature. We will discuss
them respectively in the following.

The simplistic form of language model could be tak-
ing bag of words or one-hot encoding as semantic repre-
sentation. Based on the assumption that essential seman-
tic meaning of a video can be captured by SVO (Subject,
Verb, Object) triplets, [21] proposes a compositional lan-
guage model with recursive neural network, which first ex-
tracts SVO triplets from language tree of the text description
parsed using Stanford Parser and recursively applies com-
position function to word2Vec features of S-V pair and then
SV-O pair to generate a single feature vector for the sen-
tence. This approach helps to focus on the key words of
sentence description in the training data, but is limited by
rigid template. Therefore, in other works, richer language
models have been applied, especially RNN-based models.
For example, [6] uses a recurrent neural network to encode
the words in a sentence which enables to capture all the de-
tails of the sentence. [8] additionally incorporates coher-
ence loss, which is the perplexity of the generated sentence,
to guarantee the contextual relationship among the words in
the sentence so that it is coherent and smooth.

The visual model follows the progress of deep models in
image domain. As usual, 4096-d fc7 layer of VGG-16 pre-
trained on ImageNet is extracted for each frame of a video.
Aside from works that apply convolutional neural networks
to a fixed temporal window of frames, [21] uses a tempo-
ral pyramid scheme to summarize the feature sequence and
capture motion information.

Additionally, inspired by the rich online image data, [6]
exploits web image search to help relating semantics of text
with visual signals. In this configuration, the sentence em-
bedding model consists of two branches that merge the out-
put of visual model for web images and the output of lan-
guage model for the input sentence. Specifically during
training, top-K results of web image search with the input
sentence as a query are collected, and embedding is com-

puted on this set of images using the same architecture as
for the video embedding. The idea is that the web images
serve as priors to establish connections between visual con-
cepts and sentences.

In general, the approach of joint embedding is effective
in the scenario of videos within narrow domain since the
embedding space can generalizes such finite domain well,
and richer model structures boost up performance. How-
ever, it can easily fail when encountering videos with situa-
tions that haven’t been seen before. Also since the embed-
ding is of fixed length, it limits the amount of information
that can be carried by video and text description.

4.3. Encoder-Decoder

Inspired by the progress in machine translation and im-
age captioning, some other early works formulate video
captioning problem partially as machine translation prob-
lem where a semantic representation is generated for a video
and then is translated to natural language sentence. More
formally speaking, the framework those works propose is an
Encoder-Decoder structure that encodes video into seman-
tic representation and then decodes into natural language.
The benefit of translation is that now we can have an open-
world vocabulary if we feed machine translation model with
large text corpus, which is not hard to obtain.

[19] first proposes to use mean pooling features across
all frames in the video as a simple yet reasonable semantic
representation for short video clips. It translates to natural
language via a two-layer LSTM using the global video se-
mantic representation as input at every time step. LSTM
decoder for text generation becomes a pretty common prac-
tice as it demonstrates its capability in natural language pro-
cessing. As is later pointed out in the literature [22] [7],
mean pooling collapses the temporal structure of a video,
i.e. the dependencies and the ordering of activities. There-
fore, many follow-up works explore improving model ca-
pability of encoding both local motion features and global
temporal structures.

Attention Mechanism. The attention mechanisms in
deep neural networks are inspired by humans attention that
sequentially focuses on the most relevant parts of the in-
formation over time to make predictions. [22] adapts the
recently proposed soft attention mechanism to balance ex-
ploitation of local temporal structure, which captures de-
tails of activities, and global temporal structure, which re-
flects long-term dependencies and ordering of activities.
The framework first uses 3D-CNN to generate temporal fea-
tures vectors which capture local temporal structure (mo-
tion features). The decoder is an LSTM with soft attention
mechanism, which takes in the dynamic weighted sum of
the temporal feature vectors according to attention weights
generated at each time step. Specifically, attention weights
are generated for all the frames based on hidden state of
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previous time step (which presumably summarizes all the
previously generated words) and the corresponding frame’s
temporal feature vector. Soft attention mechanism enables
the decoder to look at different temporal locations and relate
activities occurring cross time span for global reasoning. It
has become a common practice in future works.

As a complement to temporal attention mechanism,
[24] proposes Gaze Encoding Attention Network (GEAN),
which predicts spatial attention map per frame supervised
by human gaze data and then generates caption from the
pool of masked visual features using soft temporal attention
as usual. It has been observed that gaze tracking is rather
stable across subjects when watching a video, meaning that
spatial attention can be connected with video captioning and
human gaze data can be used as a strong training signal. Its
Recurrent Gaze Prediction (RGP) model fuses the history
of visual features of frames through time via GRU and pre-
dicts a gaze map per frame in temporal order. The gaze map
is then applied to corresponding C3D motion feature map
and fovea feature map, because the authors argue that hu-
man perceives focused regions in a high visual acuity with
more neurons, while peripheral scene fields in a low res-
olution with fewer neurons. Independent from the rest of
GEAN, RGP is trained with Hollywood2 EM dataset, which
is a large-scale activity recognition dataset with human gaze
data, as well as a self-constructed toy dataset VAS.

The experiments show that introducing spatial attention
mechanism helps with performance for not only GEAN but
also multiple other temporal attention-based video caption-
ing methods. It demonstrate that ”where to look” signals
in both temporal dimension and spatial dimension are very
important to solving video captioning. However, it should
be noted that in contrast to soft temporal attention, spatial
attention practiced here considers only visual context but
not previously generated words. In addition, since RGP is
trained separately from the rest of video captioning frame-
work due to lack of large-scale video captioning dataset
with human gaze data, RGP is unaware of the specific task
of video captioning.

Hierarchical Neural Encoder. Another line of works
focuses on refining neural encoder. Even though LSTM
can deal with long video clips in principal, it has been re-
ported that the favorable length of video clips to LSTM falls
in the range of 30 to 80 frames [18]. Therefore, it’s usu-
ally hard for a plain LSTM to capture the large number
of long-range dependencies in video. Aiming at learning
the visual features with multiple temporal granularities, [7]
exploits Hierarchical Recurrent Neural Encoder (HRNE),
which consists of a LSTM filter on sub-sequences of an
input sequence to explore local temporal features within
sub-sequences and then another layer of LSTM on top to
summarize and learn temporal dependencies among sub-
sequences. Such a hierarchical structure significantly re-

duces the length of input information flow but is still capa-
ble of exploiting temporal information over longer time. It
has been noted that more LSTM layers could be added to
HRNE to build multiple time-scale abstraction of the visual
information. The method achieves state-of-the-art perfor-
mance on video captioning benchmarks at that time. How-
ever, it requires fixed manual setting of the sub-sequence
length, and thus it doesn’t adapt to varying types of videos.

[1] extends the idea of hierarchical LSTM, but instead
of fixed length, it uses a trainable boundary detector cell to
dynamically identify discontinuity points between frames
and decide when to re-initialize memory of bottom-level
LSTM. The top-level LSTM still keeps track of the sum-
marized representations and contextual information even
though the bottom-level LSTM has cleared its history. The
idea is that visual content as well as semantic content of a
video may change abruptly across frames. Such architec-
ture ensures that the input data following a time boundary
are not misled by those seen before the boundary, and gener-
ates a hierarchical representation of the video in which each
chunk is composed by homogeneous frames. The method
boosts performance of HRNE, and achieves state-of-the-art
performance at that time on movie description dataset like
M-VAD and MPII-MD, and competitive performance on
MSVD. The reason is that movie videos have more under-
lying hierarchies, while MSVD mainly contains short video
clips with a single action, and is therefore less appropriate
than M-VAD and MPII-MD to evaluate the effectiveness
of the method in identifying the video temporal structure.
Meanwhile, the architecture enables greater interpretabil-
ity, as now the layered structure of video also gets revealed
alongside the encoded semantic representation and the cor-
respondence of words to video frames can be inferred.

The authors specifically investigate the learned bound-
aries, and find that the proposed boundary-aware LSTM cell
can identify camera changes and appearance variations, but
also detects more soft boundaries which do not correspond
to shots. Replacing learned boundary detector with shot de-
tector reduces captioning scores. Therefore, even though
shots give a reasonable decomposition of the video, there
are more implicit video structures that can be utilized for
better captioning performance.

Aside from those progresses, [18] demonstrates that a
sequence-to-sequence model (S2VT) which uses a single
two-layer stacked LSTM integrating both encoding stage
and decoding stage works for video to text, with the ben-
efit of weight sharing. Such architecture has been practiced
in machine translation, but not in video captioning before.
The first LSTM layer in the architecture is used to model the
visual frame sequence, and the next layer is used to model
the output word sequence. Specifically, the model has two
stages: the first LSTM layer receives a sequence of frames
and encodes them while the second LSTM layer receives
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Method MSVD MSR-VTT M-VAD MPII-MD
Mean-pooling [19] 26.9 23.7 6.1 6.7

Temporal Attention [22] 29.6 - 5.7 -
HRNE [7] 33.9 - 5.8 -

Boundary-aware NE [1] 32.4 - 7.3 7.0
S2VT [18] 29.8 - 6.7 7.1
GEAN [24] - - 7.2 7.2

Figure 2. Reported METEOR scores of Encoder-Decoder methods
on common benchmark datasets. METEOR is used as it’s shown
in the literature to be more reliable as measurement than the oth-
ers. There are many variants of the models and different runs of
experiments, and we show the most commonly referred numbers
in the literature for comparison. The purpose of the figure is to
take a glance at how video captioning performance evolves over
iterations.

the hidden representation and null padded input words; af-
ter all the frames in the video clip are exhausted, the sec-
ond LSTM layer is fed with the beginning-of-sentence tag,
which prompts it to start decoding its current hidden repre-
sentation into a sequence of words. The experiments show
that it achieves state-of-the-art performance on MSVD, M-
VAD and MPII-MD, but it requires incorporating heavy-
weight optical flows as input along with RGB frames.

Figure 2 shows reported METEOR scores of the dis-
cussed Encode-Decoder methods, evaluated on the bench-
mark datasets appearing in the related literature. It’s notable
that methods performing relatively well on MSVD can do
poorly on M-VAD and MPII-MD. This shows the discrep-
ancy of characteristics between MSVD and movie descrip-
tion datasets. In general, the performance improvement on
movie description datasets is marginal compared to that on
MSVD. Meanwhile, it can be observed that the major gains
of performance come from introducing hierarchical struc-
ture for encoding stage and attention mechanisms.

The Encoder-Decoder framework opens up possibilities
for open-domain video captioning, so that the generated de-
scription can have open-world vocabulary. The early model
has the limitation of degenerating video captioning prob-
lem to image captioning problem, where all the temporal or-
dering and dependencies of activities of video get ignored.
While follow-up works of soft attention mechanism and
neural encoder have alleviated the limitation, it should be
recognized that there is still a lot of temporal information
of video not fully utilized, since this approach still doesn’t
handle well long videos or videos with complex sequence
of activities. This asks for not only more advanced model
but also re-posing the problem as we will discuss below.

4.4. Paragraph/Dense Captioning

The semantics complexity of a single sentence usually
doesn’t match that of a video in the wild that spans longer
than magnitude of seconds. Therefore, the most recent
works have shifted focus on to generating paragraph or

dense captioning for a video. We’d like all the activities and
interactions of them in a video being described in natural
language, and more preferably a paragraph that has inter-
nal coherence across sentences. With introduction of large
scale dataset with dense annotations of sentence descrip-
tions, such problems become feasible to solve.

Paragraph Description. This line of works focuses on
generating a long story-like caption. Some works first tem-
porally segment the video with action localization [15] or
different levels of details [11], and then generate multiple
captions for those segments and connect them with natu-
ral language processing techniques. However, these meth-
ods are usually limited in inter-sentence dependencies, even
though they explicitly enforce some kind of consistency cri-
teria.

The key framework proposed by [23] is hierarchical
RNN (h-RNN) for describing a long video with a paragraph
consisting of multiple sentences. This framework consists
of two generators: (1) a sentence generator which produces
single short sentences that describe specific time intervals
and video regions, and (2) a paragraph generator which
takes the sentential embedding as input and uses another re-
current layer to output the paragraph state; such state is then
used to initialize the sentence generator. In addition, both
sentence and paragraph generators adopt recurrent layers
for language modeling. It uses C3D features to model video
motion and activities, and applies soft temporal attention to
the feature pool before feeding into Hierarchical RNN. The
model is evaluated on TACoS-Multi Dataset which provides
paragraph description to video clips and MSVD which pro-
vides parallel sentences to video clip and is used as a special
case where the number of sentence in the paragraph is 1.
Interestingly, the experiments show that the special case h-
RNN outperforms state-of-the-art single-sentence caption-
ing methods on MSVD dataset at that time, which means
the hierarchy helps not only inter-sentence dependencies
but also intra-sentence dependencies. Meanwhile, h-RNN
definitely outperforms baseline methods that have no hi-
erarchy, i.e. with only the sentence generator, but not the
paragraph generator.

The evaluation of paragraph generation has only been
conducted on closed-domain dataset, and thus the conclu-
sion is not necessarily applicable to general open domain
dataset. This calls for large-scale open domain video dataset
with paragraph description annotations. Additionally, one
possible improvement identified by the authors is to lever-
age bi-directional RNN. In h-RNN, the sentential informa-
tion flows uni-directionally through the paragraph recurrent
layer, and thus misleading information will be potentially
passed down when the first several sentences in a para-
graph are generated incorrectly. Using bidirectional RNN
for sentence generation would possibly alleviate the issue
and make the model more robust to drifting.
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Figure 3. Example of dense captioning of events for a video clip.
Here each event has its own temporal localization, indicated by
start time and end time, and caption. Multiple events can overlap
in time, and can be causally related to each other.

Dense Captioning. The pioneer work in dense cap-
tioning for video is [5], which proposes the benchmark
dense captioning dataset ActivityNet Captions and the task
of dense captioning for events. The task is in analogy to
dense captioning for image, where captions as well as their
temporal localization should be provided for a video. Each
caption describes an event involving a single major activity
and can be overlapping with each other in temporal axis.
Figure 3 shows an example of dense captioning for video.
The network architecture is inspired by Deep Activity Pro-
posal network [3], which consists of an event proposal mod-
ule and a captioning module. The proposal module takes
in C3D video features and generates proposals of temporal
segments in terms of start time, end time and hidden vec-
tor representation at varying temporal scales. The neigh-
boring proposals to a single proposal can be categorized
into the past bucket and the future bucket based on start
time. For each proposal, the captioning module uses at-
tention mechanism to generalize past vector representation
from the past bucket and future vector representation from
the future bucket in order to provide temporal context, and
generates caption using LSTM by feeding in the concate-
nation of past representation, proposal representation and
future representation. This architecture allows to detect all
events in a single pass of the video without need for heavy
temporal sliding window.

The experiments show that including temporal context
improves performance in general. This is consistent with
our intuition that most events in a video are highly corre-
lated and can even cause one another. Also the deep cap-
tioning model using ground truth proposal significantly out-
performs all the other state-of-the-art methods, demonstrat-

ing the capability of its captioning module and that jointly
learning localization and captioning helps video captioning
quality. The reported scores on ActivityNet Captions are
shown in Figure 4. This serves as a baseline benchmark for
future dense captioning methods.

While temporal localization greatly helps learning of
captioning, such information is not always available, and
thus this is where weak supervision plays a role. [14] is the
first work for dense video captioning by weakly supervised
learning with only video-level sentence annotations. The
architecture of the proposed approach consists of three ma-
jor components: visual model, region-sequence model and
language model. The visual model is a lexical-FCN trained
with weakly supervised multi-instance multi-label learning,
which builds the weak mapping between sentence lexical
words and grid regions. The second component solves
the region-sequence generation problem, which uses sub-
modular maximization scheme to automatically generate in-
formative and diverse region-sequences based on Lexical-
FCN outputs. A winner-takes-all scheme is proposed to
weakly associate sentences to region-sequences in the train-
ing phase. The third component generates sentence output
for each region-sequence with a sequence-to-sequence lan-
guage model.

Although the approach is trained with weakly supervised
signal, the experiments show that the best single caption by
the proposed approach outperforms the state-of-the-art re-
sults on the MSR-VTT challenge by a large margin. One
limitation is that the framework doesn’t leverage the tem-
poral context among the dense captions, and thus it doesn’t
necessarily produce a consistent narration for the video
clips. This is one possible future extension as is pointed
out by authors. Meanwhile, the experiments are conducted
on MSR-VTT, with the assumption that the 20 parallel sen-
tences for each clip in the dataset contain very diversified
annotations and can be used in the task of dense captioning.
However, ActivityNet Captions may be more appropriate
for the purpose.

In general, generating multiple sentences per video clip
produce the most state-of-the-art results. Such problem
definition allows each sentence to cover a reasonable and
adaptable time scope. It provides more freedom in caption-
ing and more detailed instructions to learning. making it
possible to scale up to much longer videos. Dense caption-
ing for video is especially an on-going topic, with many new
works quickly arising.

5. Future Directions
Video captioning problem is not yet solved, as the best

performance so far is still far from human-level captioning.
Here, we identify several possible future directions, accord-
ing to discussions in the literature and progress in related
fields.
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with GT proposals with learned proposals
Method B@1 B@2 B@3 B@4 M C B@1 B@2 B@3 B@4 M C

Mean-pooling [19] 18.22 7.43 3.24 1.24 6.56 14.86 - - - - - -
S2VT [18] 20.35 8.99 4.60 2.62 7.85 20.97 - - - - - -

H-RNN [23] 19.46 8.78 4.34 2.53 8.02 20.18 - - - - - -
Deep Captioning [5] 26.45 13.48 7.12 3.98 9.46 24.56 17.95 7.69 3.86 2.20 4.82 17.29

Figure 4. Reported Bleu (B), METEOR (M) and CIDEr (C) captioning scores for the task of dense-captioning events in [5]. The left is
performances of just captioning module with ground truth proposals. The right is the combined performances of event proposal module
and captioning module. The prior work has focused only on describing entire videos and not also detecting a series of events, and thus only
performance using ground truth proposals get reported.

• Dense captioning is one promising direction to go. It’s
shown in the literature that there is high agreement in
the temporal event segments among human subjects,
which is in line with research suggesting that brain ac-
tivity is naturally structured into semantically mean-
ingful events. Therefore, dense captioning is a more
well-defined task than general video captioning. Ac-
tivityNet Challenge starts in 2017 to include dense
captioning for video as part of its competition, and
therefore we are expecting more exciting works will
appear in this field. With ActivityNet Captions dataset
ready at hand, we are able to employ deeper models.

• Attention mechanism plays a very important role in
video understanding. While works have been shown
on either soft temporal attention or static spatial at-
tention, one possible extension is soft spatio-temporal
attention which dynamically looks at spatio-temporal
regions, especially in the scope of dense captioning
where multiple events can refer similar temporal seg-
ments but different spatial regions.

• Audio that accompany visual frames have been uti-
lized in activity detection problem to achieve state-of-
the-art performance. Audio is even more related to
video captioning, as it to some extent reveals the story
line and offers semantic cues. Therefore, one possible
attempt is to incorporate audio data into learning.

• We have seen some works on learning with web im-
age search to help model connect semantic concepts
with visual cues, or human gaze behaviors to imitate
human visual focus when describing a video. Those
practices improve the performance of the underlying
architectures. Therefore, one possible direction is to
involve generally speaking common sense knowledge
into video captioning model. This has been practiced
in visual question answering, which brings improve-
ment to performance.

• Most existing works focus on discovering objects, ac-
tions and their interactions. While they are important

to semantics of captioning, high-level abstract con-
cepts have rarely been touched. Human-level caption-
ing is not only able to narrate all details but also able to
summarize with high-level reasoning based on needs.
Especially when forming a paragraph description, ma-
jor events should be kept while minor events could be
omit.

• The temporal structure of video is intrinsically layered.
Whether being able to capture temporal structure and
context greatly influences the captioning quality of the
methods as is demonstrated in previous discussions. It
involves local temporal structure, which requires se-
mantically richer motion feature representations, and
global temporal structure, which requires richer model
of hierarchy to model diverse temporal granularities.
This is the fundamental challenge we’d like to tackle.
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N. Yokoya. Learning joint representations of videos and sen-
tences with web image search. In European Conference on
Computer Vision, pages 651–667. Springer, 2016.

8



[7] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical
recurrent neural encoder for video representation with appli-
cation to captioning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1029–
1038, 2016.

[8] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly model-
ing embedding and translation to bridge video and language.
2016.

[9] J. Park, C. Song, and J.-h. Han. A study of evaluation metrics
and datasets for video captioning. In Intelligent Informat-
ics and Biomedical Sciences (ICIIBMS), 2017 International
Conference on, pages 172–175. IEEE, 2017.

[10] M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele,
and M. Pinkal. Grounding action descriptions in videos.
Transactions of the Association for Computational Linguis-
tics (TACL), 1:25–36, 2013.

[11] A. Rohrbach, M. Rohrbach, W. Qiu, A. Friedrich, M. Pinkal,
and B. Schiele. Coherent multi-sentence video description
with variable level of detail. In German conference on pat-
tern recognition, pages 184–195. Springer, 2014.

[12] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele.
A dataset for movie description. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3202–3212, 2015.

[13] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and
B. Schiele. Translating video content to natural language
descriptions. In Computer Vision (ICCV), 2013 IEEE Inter-
national Conference on, pages 433–440. IEEE, 2013.

[14] Z. Shen, J. Li, Z. Su, M. Li, Y. Chen, Y.-G. Jiang, and X. Xue.
Weakly supervised dense video captioning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, page 10, 2017.

[15] A. Shin, K. Ohnishi, and T. Harada. Beyond caption to nar-
rative: Video captioning with multiple sentences. In Image
Processing (ICIP), 2016 IEEE International Conference on,
pages 3364–3368. IEEE, 2016.

[16] J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko,
and R. Mooney. Integrating language and vision to generate
natural language descriptions of videos in the wild. In Pro-
ceedings of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: Technical Papers, pages
1218–1227, 2014.

[17] A. Torabi, C. Pal, H. Larochelle, and A. Courville. Using
descriptive video services to create a large data source for
video annotation research. arXiv preprint arXiv:1503.01070,
2015.

[18] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,
T. Darrell, and K. Saenko. Sequence to sequence-video to
text. In Proceedings of the IEEE international conference on
computer vision, pages 4534–4542, 2015.

[19] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,
R. Mooney, and K. Saenko. Translating videos to natural lan-
guage using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729, 2014.

[20] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video de-
scription dataset for bridging video and language. In Com-
puter Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on, pages 5288–5296. IEEE, 2016.

[21] R. Xu, C. Xiong, W. Chen, and J. J. Corso. Jointly model-
ing deep video and compositional text to bridge vision and
language in a unified framework. 2015.

[22] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,
and A. Courville. Describing videos by exploiting temporal
structure. In Proceedings of the IEEE international confer-
ence on computer vision, pages 4507–4515, 2015.

[23] H. Yu, J. Wang, Z. Huang, Y. Yang, and W. Xu. Video
paragraph captioning using hierarchical recurrent neural net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4584–4593, 2016.

[24] Y. Yu, J. Choi, Y. Kim, K. Yoo, S.-H. Lee, and G. Kim. Su-
pervising neural attention models for video captioning by hu-
man gaze data. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2017). Honolulu, Hawaii, pages
2680–8, 2017.

9


