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Abstract

The ability to understand and predict where humans
naturally fixate their eyes in images is a valuable compo-
nent towards advancing computer vision systems. In recent
years, the problem of predicting visual saliency has ad-
vanced from working with low-level hand-crafted features
to data-driven approaches via neural networks, given their
recent successful advances in capturing and understanding
high-level information. Further, recent publications have
made available saliency datasets that are sufficiently large
enough to meaningful train and test end-to-end neural net-
works.

This literature survey will first introduce and explore the
visual saliency task, Then, we will survey some of the most
relevant methods and datasets in the research area, includ-
ing seminal methods from the early years as well as the most
recent state-of-the-art.

1. Introduction

One of the many challenges we face in computer vision
is to be able to mimic human levels of visual understand-
ing. Humans outperform computer counterparts when it
comes to looking at an image, identifying its most impor-
tant parts, and piecing together the story conveyed by the
image. In short, the human visual system is incredibly fast
and reliable at detecting visual saliency, but computer vision
systems still struggle to model this same high-level under-
standing at the same speed and level of accuracy. In recent
years, the high-level visual task of predicting saliency has
risen to much greater interest within the computer vision
community, as we begin to tackle increasingly harder chal-
lenges.

1.1. What is visual saliency?

At any moment in time, the human visual system re-
ceives an enormous amount of information that it must
quickly filter through, process, and communicate to the rest
of the body in a never-ending loop. Usually, we can pro-
cess only a small fraction of this information, with the most

Figure 2. Two example saliency heatmaps overlaid on their origi-
nal source images from the SALICON dataset. Notice that while
there are many different objects in the scene that could be inter-
esting, only some major locations stand out as being the most eye-
grabbing.

important bits actually presented to our conscious aware-
ness. How does the human system go about the selection
process of what visual information is important enough to
be further processed? In more colloquial terms, what are the
most interesting and important parts of the image? Where
are human eyes most likely to fixate? In visual saliency, the
question is more about where, and less so about what.

Although this task slightly de-emphasizes the impor-
tance of an object (where rather than what), regions of high
saliency within an image still tend to be around objects. In
other words, a prior on detected objects can often be helpful
when predicting saliency. An object’s saliency in the con-
text of an image is a combination of multiple factors, some
of which include local and global contrast, overall spatial
distribution, how ”in focus” the object is, its background-



Figure 3. Challenging scenes for saliency prediction: house in low-
contrast environment

edness, and how much it is affected by central bias. These
properties often appear when examining human visual at-
tention, and therefore often serve as a basis for building
systems for predicting visual sailency.

Thus, visual saliency is fundamentally related to the pro-
cess of selective attention in the human visual system. The
objective of a saliency prediction system is to approximate
which parts of an image tend to attract human visual atten-
tion, which correspond to where human eyes would likely
fixate when viewing the image. The predicted information
is then aggregated into a single saliency map over the orig-
inal image space, where the values in the heatmap corre-
spond to how salient that pixel is (i.e. how likely it is to
capture the human eye’s attention). Figure[2illustrates what
a ground-truth saliency heatmap might look like for a given
image, and is what saliency prediction systems strive to re-
produce.

1.2. Why is predicting saliency difficult?

As with most computer vision tasks, early and simple
models usually revolve around low-level features, such as
contrast, edges, and color. For instance, contrast could be
used to generally detect objects, which might be more likely
to be associated with a region with higher relative salience
than the rest of the image.

However, it has been shown that the task of predicting
visual saliency requires far more than simple low-level fea-
tures to perform reasonably well at all. For example, the
house in Figure [3| does not particularly stand out from its
background from the perspective of low-level contrast. The
house could easily be interpreted as part of the background
or otherwise dismissed as not salient, even though it is se-
mantically salient in a higher-level human cognition. This
is an example scenario in which traditional prediction sys-
tems that rely on low-level saliency cues would fail. Thus,
an effective image saliency predictor should be able to learn
and understand that not all detected objects are worthy of at-
tention. Even within this, the rules of what does and what
does not deserve attention are highly complex and can be

considered a high-level visual understanding task.

The recent trend in visual recognition tasks has been
that computer systems are being continuously pushed to-
wards learning increasingly higher-level and more compli-
cated features. These include tasks such as object clas-
sification, video activity recognition, and visual question-
answering. Much like these sister tasks, the visual saliency
prediction task also demands higher-level understanding in
order to accurately learn and predict the salient regions of
an image.

Many of the state-of-the-art solutions to these challenges
leverage the ability of existing methods to recognize and
classify objects. However, this alone is not sufficient to de-
termine which locations in an image are the most attention-
grabbing for a visual saliency system. In any given image,
there may be hundreds of detected objects, and while rel-
ative size could be a signal to lend greater weight to a re-
gion’s saliency, it does not necessarily accurately represent
human visual attention. For example, consider a scene with
a repeated pattern of background objects and a major fore-
ground object, such as a woman lying in a flower field in
Figure[I] The repeated background objects can be detected,
but the ground-truth human visual system would pay very
little attention to these objects, if at all. Instead, a human
would likely focus most, if not all, of their attention on the
woman directly.

Unfortunately, the process of accurately and efficiently
training systems for predicting saliency is challenging and
tedious compared to more traditional computer vision prob-
lems like classification and segmentation. Firstly, training
data is difficult and costly to obtain because it requires eye-
tracking data from human observers, which is much more
involved than simply labelling or segmenting objects in an
image. This challenge has recently made progress through
effective methods for crowdsourcing data collection, which
has led to larger, higher quality, and publicly available
datasets for advancing saliency research. Secondly, saliency
prediction involves predicting and assigning values for ap-
proximately every pixel for a given input image, rather than
determining one or several labels globally. Furthermore, the
resulting heatmap must be spatially coherent over the image
space and have sensible transitions between adjacent pixels.
This is overall a more complicated input-output task, but is
similar in some ways to the semantic segmentation task.

As crucial as high-level understanding is to the success
of a visual saliency system, we will soon see that low-
level features must not be thrown out of consideration en-
tirely. Early attempts towards visual saliency prediction be-
gan with learning from low-level features, and the informa-
tion to be gained from these low-level features can still be
used in conjunction with a system’s learned high-level fea-
tures to potentially produce even better results.

Altogether, the task of predicting human visual attention



presents a relatively new and exciting challenge for com-
puter vision research. Although it shares many similarities
with more classic and familiar visual tasks, it continues to
demand more advanced cognitive abilities from our com-
puter systems, making this problem an especially worth-
while and interesting endeavor within the computer vision
community.

This literature review will continue by discussing the
driving motivations and potential applications of saliency
research in Section 2. Then, we will briefly discuss some
early approaches and models from the beginning of modern
saliency research in Section 3. Moving forward, in Section
4, we will survey current methods and the state-of-the-art in
saliency research. In Section 5, we will discuss training and
evaluation by examining the most relevant datasets, bench-
marks, and metrics. Finally, we conclude our survey and
discuss future directions in Section 6.

2. Motivations and Applications

Applications of saliency maps widely vary across com-
puter vision tasks. Because of its representation of hu-
man visual attention, saliency maps have been applied to
attention-based recognition, detection, and segmentation
tasks. Understanding how humans naturally allocate their
visual processing resources can help with creating more in-
telligent classification of objects and implicitly provides an
underlying ranking of categories.

Saliency information can also be applied towards
context-aware image and video compression and resizing,
as well as other image processing tasks such as automatic
cropping. In a similar vein, saliency prediction has re-
cently been applied to new, emerging visual mediums such
as panoramic and 360 degree images, videos, and virtual re-
ality environments. In 360 degree video, saliency maps can
be applied to the entire large frame to determine which parts
would be the most interesting to a viewer. Using this infor-
mation, a system can plan a standard field-of-view virtual
camera path through the 360 degree video and produce a
standard field-of-view camera that can be viewed normally.
Similar systems can be applied to panoramic images and
videos as well.

Saliency prediction has been further explored in the con-
text of virtual reality environments [[18]], since users are no
longer limited to just eye movement. Instead, users have the
freedom to significantly move a combination of their heads
and their eyes to explore the environment, which provides
new information and ground truth that can be used to learn
more accurate predictors.

In the captioning task, saliency predictors can help with
clarifying and improving otherwise ambiguous captions, by
verifying the existence of the salient objects or actions and
by providing an implicit ranking on what parts of the scene
are most important to include in the caption itself.
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Figure 4. Itti and Koch’s classical model for predicting a saliency
map

Moving slightly away from computer vision tasks,
saliency prediction has also been used to assist with the de-
velopment of effective user interface designs. For instance,
if an effective saliency predictor fails to identify a high level
of saliency around a relatively important part of a user inter-
face design, then this might be a hint that the current design
would not be very intuitive and user-friendly to a human,
suggesting that the designer consider other alternatives.

Even more interestingly, sufficiently accurate and effi-
cient saliency predictors could be used “full circle” by in-
tegrating them back into other computer vision systems to
create more complex and powerful pipelines that potentially
outperform previously existing systems in their respective
domains. For example, a saliency prediction system built
upon object classification could be recursively used to cre-
ate an even more powerful object classifier.

3. Early Methods and Unsupervised Models

Initial approaches towards saliency prediction are mo-
tivated by fundamental concepts of how the human brain
works. The human visual system processes information
in two steps: a pre-attentive process, in which low-level
features like edges are “instantly” observed, followed by
a complex attentive process that achieves higher-level un-
derstanding of the object(s) in the scene. From this, many
traditional models for saliency are fundamentally related to
feature and object detection [4, 20]. An overarching theme
in these early models was that they were all unsupervised
and not at all data-driven, since no real datasets of human
fixation data was available at the time. As such, these mod-
els attempt to extract features and information from the im-
age directly, sometimes in a hierarchical approach, and then
produce a predicted saliency map from only the source im-
age.

Among early works in saliency research, Itti and Koch’s
[6]] work in computational modeling for visual attention in
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Figure 5. Murray et al.’s spatiochromatic wavelet model, SIM

2001 is perhaps the most influential. Inspired by ideas in
neuroscience, Itti and Koch’s classical model (illustrated in
Figure [4)) performed low-level hand-crafted feature extrac-
tion for components such as color, intensity, and orienta-
tion to create multiple feature maps. Using these feature
maps, they create a single unique saliency map, which is
then scanned by attention using a winner-takes-all network
to determine the region of greatest attention within the im-
age. This relatively low-level approach towards predicting
saliency set the standard for much of the later saliency re-
search to come.

In another biologically inspired work, Murray et al. [14]
propose a saliency model named SIM (saliency by induction
mechanisms) based on low-level spatiochromatic informa-
tion. Their low-level color induction model (shown in Fig-
ure [5)) decomposes each color channel into wavelet planes,
computes contrast planes, which then produces induction
weight planes that they combine via an inverse wavelet
transform to create a saliency map for that channel. Com-
bining all of the channels produces a final, single saliency
map for the image.

However, these low-level models fall significantly short
of accurately mimicking human visual attention, due to
their inability to capture the high-level nuances of the hu-
man visual system. Fortunately, in recent years, convo-
lutional neural networks have rapidly grown in popularity
for computer vision tasks due to their widespread success
across multiple visual challenges. Their ability to extract
high-level information and learn more complex functions
such as human attention has contributed to its successful
application to saliency prediction as well.

4. Current Methods and the State-of-the-Art

Recent work in saliency prediction has leveraged the ca-
pacity of neural networks to achieve higher-level under-
standing of visual data and overcome the problems that
more traditional and lower-level models experienced. In
most cases, the networks are trained by formulating saliency
as a problem that can be learned via end-to-end regression.
Essentially all of the more recent and current methods are
data-driven and result in largely supervised models. How-
ever, it is important to note that this would not be possible
without the availability of sufficiently large enough datasets.
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Figure 6. Vig et al.’s ensemble of deep networks (eDN)

Initial data-driven models and approaches work around this
constraint by adapting other trained models, and more re-
cent models leverage the introduction of even more recently
available and large datasets. We will return to the topic of
datasets for deep supervised learning in Section 5.

4.1. Early Supervised Methods Using Neural Net-
works

In 2014, Vig et al. proposed the eDN (ensembles of
deep networks) model [19]. eDN generates a large num-
ber of richly-parameterized 1 to 3 layer networks using
biology-inspired hierarchical features. They use hyperpa-
rameter optimization to search for independent models that
are predictive of saliency and combine them into a sin-
gle model. From the model, they extract feature vectors,
label them with a small-scale empirical gaze dataset, and
feed them into a linear SVM classifier, which produces the
final saliency map. The eDN pipeline (shown in Figure
[6) achieved state-of-the-art results on the MIT300 saliency
benchmark when it was first published in 2014.

From this early application of networks came Deep Gaze
I [12] also in 2014, which extended the deep AlexNet ar-
chitecture [9] for image recognition to the saliency predic-
tion task. Deep Gaze I is one of the first applications of
transfer learning for saliency prediction. It uses pre-trained
parameters from AlexNet’s architecture on ImageNet [3],
and then further fine-tunes the network on the MIT saliency
dataset. This instance of transfer learning was primarily
motivated by the lack of sufficiently large saliency datasets
at the time, so the authors would normally have been con-
strained to work with relatively shallow neural networks to
avoid severe overfitting. To overcome this, they maintained
a relatively shallow network with AlexNet pre-trained on
ImageNet and further refined the learned weights using a
subset of the MIT1003 dataset. They also made a novel
observation in that images tended to have a center-bias for
salient regions, so they incorporated a center-bias prior into
their training. With this approach, Deep Gaze I was able to
significantly outperform the eDN [19] ensemble method on
the MIT300 saliency benchmark.

Deep Gaze I showed that using off-the-shelf image
recognition features from ImageNet in a convolutional neu-
ral network can significantly outperform shallower and sim-
pler, non-data-driven saliency models without being trained
explicitly nor end-to-end specifically for the saliency task.
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Figure 7. Kmmerer et al.’s Deep Gaze I convolutional neural net-
work, pre-trained for object recognition

It was also the first model (shown in Figure [7) to employ
a relatively deeper convolutional neural network model for
saliency prediction (5 layers compared to eDN’s 1-3 layers),
although it borrows a significant portion of its weights from
AlexNet trained on ImageNet. From here, we move onto
more recent methods that approach the saliency prediction
task completely end-to-end.

4.2. Deep Supervised Learning

In 2015, SalDet [21] attempts to overcome problems
with low-level saliency cues in low-contrast backgrounds
and confusing overall appearances. They create a deep
learning framework focused around consideration of mul-
tiple contexts to detect salient objects in images. Their deep
model considers both global context to detect saliency in the
entire image as well as local context to predict saliency in
small, localized regions. Together, the model examines the
image at multiple resolutions and both global and local con-
texts are trained jointly. However, this system only achieves
saliency detection, which answers the question of whether
or not a detected object is salient, and does not perform
saliency prediction, which is to produce a saliency map over
the original image.

In the same year, Kruthiventi ef al. introduce a ground-
breaking model named DeepFix [10]. DeepFix was the first
fully-convolutional neural network for saliency prediction
of its kind, learning hierarchical features in an end-to-end
fashion. It captures semantics at multiple scales while still
accounting for global context through the use of a novel
Location Based Convolutional (LBC) Layer, which over-
comes the otherwise problematic spatially-invariant prop-
erty of classic fully-convolutional neural networks. Deep-
Fix (shown in Figure 8] employs 5 convolution blocks with
weights initialized from the VGG-16 network and ends with
two of their novel LBC layers before producing a final
saliency map. In addition, their convolution blocks leverage
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Figure 8. DeepFix: the first fully-convolutional neural network
trained end-to-end for saliency prediction

Gaussian priors as saliency map priors to further improve
their learned weights. This fully-convolutional model sig-
nificantly outperformed all other models in 2015, and com-
petitively remains near the top of the MIT300 benchmark
today.

Also in 2015, Huang ef al. introduce SALICON [5]], a
deep neural network for saliency prediction, as well as the
largest publicly available saliency prediction dataset today,
also named SALICON. We will visit the dataset in Section
5. Huang et al. attribute the large gap in saliency prediction
between computers and humans to a so-called ’semantic
gap”’, which is the limited capability of computer models to
predict eye fixations in scenes with strong semantic content.
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Figure 9. SALICON (Saliency in Context): a deep neural network
to reduce the semantic gap via domain adaptation and multi-scale
learning
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Figure 10. JuntingNet: the first shallow convolutional network
trained end-to-end for saliency prediction
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Figure 11. SalNet: the first deep convolutional network trained
end-to-end for saliency prediction

To help bridge this semantic gap, they propose a deep neu-
ral network in SALICON, which leverages information from
multiple image scales. Shown in Figure[9] SALICON lever-
ages existing deep architectures such as AlexNet, VGG-16,
and GoogLeNet, shares weights between them, and is ap-
plied at two different image scales, fine and coarse, to obtain
a saliency map.

Next, in 2016, Pan et al. [16] present two differ-
ent end-to-end convolutional neural networks, nicknamed
JuntingNet and SalNet (shown in Figures [I0] and [T1] re-
spectively). JuntingNet is a shallow network inspired by
AlexNet, but with only 3 convolution layers and 2 fully-
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Figure 12. PDP (Probability Distribution Prediction): a proba-
bilistic model that approximates a saliency map as a generalized

Bernoulli distribution

connected layers. On the other hand, SalNet is a deeper
network with 8 convolution layers. Both models learn
saliency prediction completely end-to-end by using the con-
volutional neural networks for regression rather than classi-
fication (which would more closely achieve saliency detec-
tion). Their shallow network is trained entirely from scratch
using the recently available saliency datasets, while their
deep network uses transfer learning from a network trained
for classification. They make a key observation that the pa-
rameters from the lowest levels in networks trained for clas-
sification can be transferred effectively for saliency predic-
tion. Using the pre-trained layers, they add on some new
layers and train those specifically with saliency prediction
in mind.

Also in 2016, Jetley er al. take a very different and
probabilistic approach towards the saliency prediction task.
Their model, named PDP [7] (Probability Distribution
Prediction) formulates the saliency map as a generalized
Bernoulli distribution and trains a model to learn this distri-
bution. They train a deep neural network completely end-to-
end using novel loss functions that pair the classic softmax
loss function with functions that compute the distances be-
tween different probability distributions. With PDP (shown
in Figure [12), Jetley er al. showed that using their novel
loss functions for training deep networks outperforms other
traditional loss functions such as Euclidian and Huber loss.

At around this time, recurrent neural networks (RNN)
arose as a variant of the usually convolutional neural net-
work that performed especially well on some computer vi-
sion tasks that required more internal state. With the intro-
duction of RNNs to the computer vision community, Liu
and Han took the concept of the RNN and applied it to the
saliency prediction task, producing DSCLRCN [13]], a deep
spatial contextual long-term recurrent convolutional neural
network. Shown in Figure [I3] DSCLRCN first learns lo-
cal saliency on multiple small regions throughout the image
entirely in parallel. Then, unlike many other deep neural
networks for saliency prediction, DSCLRCN mimics the hu-
man visual system’s ability to incorporate global context by
leveraging a deep spatial long short-term model (LSTM).
The model first uses a state-of-the-art CNN model for scene
classification to extract scene features, which is then used
as contextual information for an internal LSTM, producing
a novel deep spatial contetual LSTM. Putting all of these
components together, each of which can be trained end-to-



Figure 13. DSCLRCN: A deep spatial contextual long-term recur-
rent convolutional neural network (recurrent neural network) for
saliency prediction
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Figure 14. SalGAN: a generative-adversarial network for predict-
ing saliency maps

end, produces the overall DSCLRCN model, which outputs
a final saliency map. The introduction of the LSTM helps
the model incorporate global contextual information, and
drastically enhances the accuracy of its predicted saliency
maps, allowing it to outperform the state-of-the-art. Today,
DSCLRCN still remains at the top of the MIT300 bench-
mark.

In 2017, Pan et al. [16] improve upon their work in
JuntingNet and SalNet with the introduction of the Sal-
GAN model [15] (Figure , a deep convolutional neural
network trained with adversarial examples. They create a
generator model learned from back-propagation via binary
cross entropy loss on existing saliency maps, which is then
passed into the discriminator network that is trained to iden-
tify whether or not a provided saliency map was generated
by the generator, or a ground-truth one captured from a hu-
man. SalGAN achieved competitive results at the top of the
MIT300 benchmark, and still hovers near the top today.

More recently, Kmmerer et al. [11] build upon Deep
Gaze to further explore the unique contributions between
low-level and high-level features towards fixation predic-
tion. While high-level features learned by deep networks
have proven to be very useful in predicting natural hu-
man fixation locations in images, the performance of cur-
rent saliency prediction systems still fall short of human
performance. To this end, they train Deep Gaze II to
learn high-level features and a separate model to learn low-
level features and analyze the two. They show that low-
level features are excessively neglected in favor of learning
higher-level features with increasingly deeper and deeper

networks. This provides some motivation for further exper-
imentation of different feature types within this project.

5. Datasets, Benchmarks, and Evaluation

None of these supervised models could exist without the
help of sufficiently large and well-labeled datasets. In this
section, we discuss some of the most influential datasets and
benchmarks within saliency research that have helped ad-
vance the research area in the past several years.

5.1. MIT300 and MIT1003

Released in 2012, the MIT300 benchmark and test
dataset [1] is the most well-known and standard benchmark
for evaluating saliency predictors. It is captured via eye-
tracking devices on human subjects and contains a test set
of 300 images of natural indoor and outdoor scenes for eval-
uation. Because the fixation points in the MIT300 dataset
are not publicly available, this dataset is used exclusively
for benchmarking. Recent research in saliency prediction
all benchmark their models on the MIT300 benchmark as
the primary way to compare their models with other mod-
els.

The MIT1003 dataset contains 1003 natural indoor and
outdoor scenes commonly used as training data before eval-
uation via the MIT300 bechmark above. Like the MIT300
benchmark, all 1003 images are captured using an eye-
tracker on humans.

It is worth noting that these datasets are relatively small.
As a result, there is a real danger for potential overfitting
when training and testing these models. Despite this, the
MIT300 benchmark is currently the gold standard for eval-
uating and comparing saliency models. It supports mul-
tiple different metrics for comparison; at this time, mod-
els are primarily ranked using AUC-Judd (a varient of the
standard area-under-curve metric), but will change to us-
ing NSS (normalized scanpath saliency) very soon in light
of recent research towards finding and using better metrics
for saliency evaluation [2]. NSS is the normalized scanpath
saliency between two different saliency maps. It is mea-
sured as the mean value of the normalized saliency map at
fixation locations, and should provide a more meaningful
evaluation and ranking of saliency models compared to the
current AUC-Judd metric.

Figure[I5]|shows the top of the standings for the MIT300
benchmark. Currently, Deep Gaze 1I, SALICON, DeepFix,
and DSLCRCN are very closely tied with each other at the
top of the MIT300 benchmark when ranked using AUC-
Judd. However, the differences become much clearer once
the rankings shift to using NSS, as DSLCRCN becomes a
much clearer victor.
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Figure 15. The MIT300 saliency benchmark, ranked by AUC-
JUDD metric

5.2. CAT2000

Released in 2015, the CAT2000 dataset is a relatively
larger dataset consisting of 2000 training images and 2000
test images that span 20 different categories. The training
set contains 100 images from each of the categories and
have fixation annotations from 18 different observers each.
Similar to the MIT300 and MIT1003 datasets, the CAT2000
dataset is obtained using the EyeLink1000 eye-tracking de-
vice.

5.3. SALICON

Introduced in 2015, the SALICON dataset [8]] is the
largest dataset available for saliency prediction, initially re-
leased with 10000 training images, 5000 validation images,
and 5000 test images. Most saliency prediction research use
SALICON to train their models. SALICON is a subset of
the Microsoft CoCo dataset and uses MS COCQO’s pixel-
wise semantic annotations to create a large set of saliency
annotations on a subset of the original MS COCO images.
In order to achieve such a large dataset for saliency pre-
diction, SALICON foregoes the current standard of using
eye-tracking devices to gather ground-truth data and instead
uses a more scalable, crowd-sourced method involving a
mouse. Although this data collection method may affect the
accuracy and quality of the dataset, SALICON nevertheless
introduces an acceptable and scalable method for the col-
lection of further data for saliency research.

5.4. Further Crowdsourced Methods

Following in the footsteps of SALICON, other re-
searchers sought to solve the problem of saliency datasets
being orders-of-magnitude smaller than typical datasets for
other visual recognition tasks. One such example proposes
TurkerGaze [17], a method for crowdsourcing saliency
datasets with webcam-based eye tracking using Amazon

Mechanical Turk (AMT) workers. Their method uses a
carefully designed web-based game as an eye-tracking ex-
periment to effectively perform facial landmark tracking
and then learns to predict the AMT worker’s gaze. From
then, the model uses its gaze prediction model to collect
gaze data from presenting novel images to the AMT worker.
Using this method, it is possible to use AMT workers to
quickly and efficiently collect novel saliency data for fur-
ther saliency research.

6. Future Directions and Conclusion

Saliency research has advanced significantly in recent
years, in large part due to the use of deep supervised learn-
ing, made possible by recently available datasets like SAL-
ICON. Now, there are multiple variations of deep learn-
ing models, including but not limited to shallow as well
as deep convolutional networks, multi-resolution networks,
recurrent neural networks, fully convolutional networks,
generative-adversarial networks, and even networks for pre-
dicting probability distributions. However, the saliency task
is far from solved.

Many of the current methods compete closely with one
another at the top of the MIT300 saliency benchmark, but
progress has somewhat slowed down, partially due to a lack
of good saliency evaluation methods and partially due to a
lack of sufficiently large datasets like those typically avail-
able to other visual recognition tasks. These constraints
limit how we train models and urge continued research on
both fronts in order to support the development of even bet-
ter models.

Even so, current state-of-the-art methods still fall short
from human levels of performance. Although effective for
general scenes, we still find that saliency predictors still
cannot fully understand the high-level semantics in seman-
tically rich scenes. In other words, the “semantic gap” has
closed slightly with recent models, but still remains an out-
standing research problem today. For example, even the
best saliency predictors today tend to place a disproportion-
ate amount of importance on text and humans, even when
they are not necessarily the most semantically interesting
parts of the image. Further, when presented with multiple
pieces of text, some text may be more semantically salient
than others, but today’s models are incapable of detecting
the difference and treats them equally.

As it stands, there is still room for improvement in both
the models themselves as well as how we approach collect-
ing data and evaluating our results. The enormous poten-
tial of accurate and efficient saliency predictors is an excit-
ing prospect for the advancement of technology and should
prove to be a promising visual recognition research area for
years to come.
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