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Task: Semantic Segmentation

Mapping pixels to labels

Ref: Stanford CS231n



Review: Fully Connected Layer

● W: Weight matrix: mxn
○ m: # input neurons
○ n: # output neurons

● For input vector x, we can calculate 
the layer’s activation a:
○ a = W * x

Ref: Stanford CS231n



Review: Convolutional Layer

● Input: volume of size W1×H1×D1
● Hyperparameters

○ K: Number of filters
○ F: filter (square) side length
○ S: stride
○ P: amount zero padding

● Output: volume of size W2×H2×D2 where:
○ W2=(W1−F+2P)/S+1
○ H2=(H1−F+2P)/S+1
○ D2=K

Ref: Stanford CS231n



Convolutional Neural Networks (Convnets) 
Perform Classification

Slide Credit: Jonathon Long



How can we modify CNNs for semantic 
segmentation?

Slide Credit: Jonathan Long



Proposal: Fully Convolutional Networks 
(FCNs)

● Reinterpret standard classification 
ConvNets as fully convolutional 
networks for semantic segmentation

● End-to-end pixel-to-pixel network
● Works with any sized input image 

(b/c convolutional layers only)
● Efficient Inference (~5ms)
● Fully Supervised Learning

Ref: Jonathan Long et. al 2015



Insight 1: Adapting classifiers for dense 
prediction

Slide Credit: Jonathan Long

● Problem: Fully Connected (FC) requires fixed size input and loses spatial information
● Training done patchwise (often overlapping) on a larger image→slow inference



Insight 1: Adapting classifiers for dense 
prediction

Slide Credit: Jonathan Long

● Fully connected layers just convolutions with kernels set over the entire input region
● Replace fully connected layers with convolutional layers



Fully Connected → Convolutional Layer

FC: 7x7x512 input layer + 4096D hidden layer 1 + 1000D layer 2. Turn into Conv:
● Replace the first FC layer that looks at [7x7x512] volume with a CONV layer that uses filter size 

F=7, giving output volume [1x1x4096].
● Replace the second FC layer with a CONV layer that uses filter size F=1, giving output volume 

[1x1x4096]
● Replace the last FC layer similarly, with F=1, giving final output [1x1x1000]

Ref: Stanford CS 231n



Insight 1: Adapting classifiers for dense 
prediction

Slide Credit: Jonathan Long

● Faster inference: process entire image (single pass) as opposed to overlapping 
patches (multiple passes); convolution makes most of overlapping receptive field

● Convolution downsampled input image (32x after repeatedly downsampling by 2x)
● Generates coarse feature maps with global information



Insight 1: Adapting classifiers for dense 
prediction

Slide Credit: Jonathan Long

Upsample feature maps for pixel-level predictions
Fully Convolutional because no fully connected layers.



Insight 1: Adapting classifiers for dense 
prediction

Cast ILSVRC classifiers into FCNs and compare performance on validation set 
of PASCAL 2011

Slide Credit: Jonathan Long



Insight 2: Upsampling is transposed (aka 
“backwards strided”) convolution

Convolution Transposed Convolution



Why called “transpose” convolution?

● Ex: Apply a 3x3 filter to 4x4 input to get 2x2 output
● Linearize the input at a vector: 4x4 input = 16D vector
● Thus, the output will be 2x2 = 4D vector
● Convert Conv → FC by rewriting the filter weights in a 

matrix. This will take us from 16D → 4D
● To reverse operation during upsampling (and go from 

4D → 16D), just apply the transpose of the convolution 
weight matrix

Ref: Theano Documentation



Insight 3: Skip Layers 

Ref: Long et. al 2015

Semantics vs Location

When we downsample 32x, we 
lose spatial information.

Idea: Combine What + Where 
What: coarse, downsampled 
high-layer predictions
Where: fine, low-layer 
predictions



Review: Pooling Layer 

● Input: volume of size W1×H1×D1
● Hyperparameters

○ F: filter length
○ S: stride

● Output: volume of size W2×H2×D2 where:
○ W2=(W1−F)/S+1
○ H2=(H1−F)/S+1
○ D2=D1
○ Pooling →  downsampling

Ref: Stanford CS231n



Insight 3: Skip Layers 

Ref: Long et. al 2014

Ex: FCN-16s:
1. Take Conv 7 (from stride 32 layer), apply 1x1 Conv (K=21), upsample by 2x using transpose convolution.
2. Take Pool 4 (from stride 16 layer), apply 1x1 Conv (K=21)
3. Add the two tensors, upsample 16x using transpose convolution to get dimensions of original image, with 

21 predictions at each pixel.



Comparison of Skip FCNs

Results on subset of validation set for PASCAL VOC 2011

Slide Credit: Jonathan Long



Results: PASCAL VOC 2011

VOC 2011: 8498 training images (from additional labeled data)

Slide Credit: Jonathan Long



Results: NYUDv2

1449 RGB-D images collected with Microsoft Kinect
Pixelwise labels → 40 categories
Literature suggests alternative encoding: HHA

Slide Credit: Jonathan Long



Results: SIFT Flow

● 2688 images with pixel labels
○ 33 semantic categories, 3 geometric categories

● Learn both label spaces jointly
○ learning and inference have similar performance and computation as independent models

Slide Credit: Jonathan Long



Baseline against previous state-of-art: SDS

● 20% relative improvement for mean IoU 
● 286× faster

Slide Credit: Jonathan Long



Recap

● Reinterpret standard classification convnets as “Fully convolutional” 
networks (FCN) for semantic segmentation

● Used AlexNet, VGG, and GoogleNet in experiments
● Novel architecture: combine information from different layers for 

segmentation
● State-of-the-art segmentation for PASCAL VOC 2011, NYUDv2, and SIFT 

Flow at the time
● Inference less than one fifth of a second for a typical image



Fully Convolutional Multi-Class 
Multiple Instance Learning
Pathak et al. ICLR workshop ’15

Link To Paper

http://people.eecs.berkeley.edu/~pathak/papers/iclr15.pdf


Collecting Semantic Segmentation Datasets 
for Full Supervision is Expensive

● Full supervision training for semantic segmentation requires large, 
annotated datasets → bottleneck

● It is time consuming and expensive to annotate large datasets
■ “79s per label per image” [Russakovsky et al. Arxiv 2015]

Slide Credit: Deepak Pathak



Idea: Weak Supervision

● Image-level labels (presence or absence of class)
● Cheap to obtain
● Labeling procedure:

○ For each image, label class as present (at least one pixel 
has this class) or absent

● Objective: Learn a semantic segmentation model 
from just weak image-level labels

Slide Credit: Deepak Pathak



Proposal

● Train FCN end-to-end on weak image-level labels to output heatmap for 
each class; generate semantic segmentation by taking argmax of 
heatmaps at each pixel and bilinearly interpolates to image resolution.
○ FCN works with images of any size
○ Don’t require object proposal regions (e.g. bounding boxes)

● Multiclass MIL (Multiple Instance Learning) Loss
○ Inspired by binary MIL Scenario

● Challenge: Localization
○ Classes may not be centered in image; may be multiple objects



Fully Convolutional MIL (MIL-FCN)

● Weights initialized using the16-layer VGG ILSVRC 2014 classifier weights 
(used for image-level labels)
○ Transferred output parameters from the classes common to both 

ILSVRC and PASCAL
○ Pre-training prevents model from converging to all background and 

other degenerate solutions
● Replaced the FC layers with Conv layers for semantic segmentation
● Fine-tuned with MIL loss (next slide)



Multi-class MIL Loss

● Maximize classification score 
based on each pixel-instance

● Takes advantage of inter-class 
competition to narrow down 
instance hypotheses

LI: Label set of present classes
(xl, yl):  max scoring pixel in coarse heat-maps of a class I
p̂(xl, yl): output heat-map for the lth label at location (x, y)

y = -log(x)



Results

● PASCAL VOC 2011 with Hariharan et al. (2011) train augmentations
● Test on held out PASCAL VOC 2012 test set
● Inference fast (~ ⅕ second)



Results



Future Improvements 

● Coarse output is merely interpolated
● Conditional random field regularization could refine predictions 

(upcoming)
● Grouping methods could drive learning by selecting whole segments 

instead of single points for MIL training



Semantic image segmentation with 
deep convolutional nets and fully 
connected CRFs
Chen et al. ICLR ’15

Link To Paper

https://arxiv.org/pdf/1412.7062.pdf


Motivation: The accuracy/localization 
tradeoff

● Deep CNNs (DCNN) trade-off: classification accuracy and localization 
accuracy
○ DCNNs can reliably predict the presence and rough position of objects
○ But, coarse output (due to downsampling) not sufficiently localized for accurate object 

segmentation

● Fully connected CRFs excel at localization for segmentation tasks
● Idea: Bring together DCNNs (deep CNNs) and probabilistic graphical 

models (e.g. Conditional Random Fields) for semantic segmentation



Proposed System: “DeepLab”

Slide Credit: George Papandreou



DCNN

● Weights initialized using the16-layer VGG ILSVRC 2014 classifier weights; 
FC layers converted into Conv layers

● Train convnet to predict label of center pixel 
● Apply in sliding window fashion to generate coarse score map, and apply 

bilinear interpolation to return output to size of original image

Slide Credit: George Papandreou



Challenge: Controlling Receptive Field

● Large CNN receptive field → poor performance near boundaries

Slide Credit: George Papandreou



Idea 1: Explicit control of response density

● Decrease score map stride: 32 → 8
● Efficient implementation with “atrous” algorithm 
● Enables “dense” feature extraction

Slide Credit: George Papandreou



Idea 2: Controlling receptive field (RF) size 
to accelerate dense computation

● Reduce RF size by conv layer manipulation
○ We convert VGG’s first FC layer  (4096 neurons) to 7x7x4096 Conv filter → computational 

bottleneck. Subsample first FC layer 7x7 → 3x3, making computation about 2 - 3 times 
faster.

○ Reducing channels from 4096 to 1024 didn’t sacrifice performance while significantly 
reducing computational load.

Slide Credit: George Papandreou



Accurate Boundary Recovery with 
Conditional Random Fields (CRFs)

● CRFs excel at localization and can improve segmentation boundaries

Slide Credit: George Papandreou



Review: Markov Random Fields

● It break graph into segments, 
treats each pixel as a node, 
and deletes edges that cross 
segments

● Used for GrabCut algorithm
● Uses graph cuts, unary 

potential, and energy function 
to generate segments

Slide Credit: COS 598 Lecture 2



Challenges: Conditional Random Fields 
(CRFs)

● CRFs traditionally used to smooth noisy 
segmentation maps
○ Models contain energy terms that couple neighboring nodes, 

favoring same-label assignment

● DCNN coarse outputs already smooth with 
homogenous classifications

● We want to recover detailed local structure and thin 
structures

Slide Credit: George Papandreou



Fully Connected Conditional Random Fields 
(CRFs)

● Idea: treat every pixel as a fully-connected CRF node in order to exploit 
long-range dependencies
○ Every node is connected to every other node
○ Use CRF inference to directly optimize a DCNN-driven cost function



Fully Connected CRF: Energy Function

Slide Credit: George Papandreou

Unary Term Pairwise Term

P(xi): label assignment 
prob. of pixel i

, else 0
Each km is the Gaussian kernel depends on features (denoted as f ) 
extracted for pixel i and j and is weighted by parameter wm:

The first kernel depends on both pixel positions (denoted as p) and pixel color intensities 
(denoted as I), and the second kernel only depends on pixel positions. The hyper 

parameters σα, σβ and σγ control the “scale” of the Gaussian kernels. 



Results

● Achieved state-of-the-art for PASCAL VOC-2012 semantic image 
segmentation task (71.6 IoU), using Hariharan (2011) annotation 
augmentation

● Input, DCNN, CRF-DCNN:

Slide Credit: George Papandreou


