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| ecture Focus

Semantic Segmentation = Instance Segmentation + Instance Classification

® Goal: Reduce training time annotation cost while maintaining high test time
accuracy

® BoxSup: Bounding Boxes for CNN Supervision

Point-level Supervision and Objectness Potential




How can we modify CNNs for semantic
segmentation?

< 1/5 second

< end-to-end learning \

Slide Credit: Jonathan Long ft. Rohan Doshi







BoxSup at a Glance

Underlying Goal: Increase Training Set Size by Minimizing Human Input

e |Intuition: Exploit Bounding Box Annotation to attain Large Scale Datasets for
Instance Segmentation

e |terative approach alternating between Region Proposal Generation and Deep CNN
Training

Datasets Used: PASCAL-VOC, Microsoft COCO and PASCAL-CONTEXT




Pixel Annotations vs Bounding Boxes

Refined Masks e Coarse Masks
Commercially Expensive e 15 times lighter workload
Highly available datasets

Specially trained staff needed
Not explicitly harnessed

(c) Semantic segmentation




Why Do We Care?
State of the Art Deep CNN Training

e ImageNet — largest classification dataset with quality labels
® Special purposes datasets significant smaller

~

Use Transfer Learning using ImageNet for Pre-Training

Capture Generic Features

BUT: Task Specific Dataset Size still Matters
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The BoxSup Approach:

Region Proposal Generation

|

Deep CNN Training




Baseline Architecture:
Mask-Supervised FCN

® Focus: Choice of appropriate objective function.

Fully Convolutional Net with CRF post-processing

® Loss function incorporates pixel-based ground-truth label

E(0) =D _e(Xo(p).U(p)).

P




Step 1: Initial Unsupervised Segmentation

Goal: Estimate Initial Segmentation Masks from Ground Truth Bounding Boxes

Method: Unsupervised Region Proposal Methods (think GrabCut)
Produce Multiple Masks per Object
High Recall Rates of having a good candidate in the Proposal Pool

High Variance Candidates — Data Augmentation

(a) training image (b) ground-truth

(c) rectangles

(d) GrabCut




Step 1: Initial Unsupervised Segmentation

Proposed candidate masks pool fixed throughout training.
Only labels assigned to each candidate mask are updated.
Better masks picked by the algorithm with greater number of epochs.

Labels: Pre-learnt Semantic Category or Background

(a) training image (b) ground-truth

(c) rectangles

(d) GrabCut




Step 2a: Overlapping Objective Function

Primary Goal: Label every pixel p correctly.
Goal: Pick candidate segment overlapping with the box as much as possible.

1 o
o= Xq:(l — IoU(B. 8))é(lg.1s).

Minimizing entails finding the candidate segment S that has the largest loU with B, for
each bounding box B.




Step 2b: Regression Objective Function

Primary Goal: Label every pixel p correctly.
Goal: Update Network Parameters.

E- =) e(Xo(p),1s(p))-

P

Regression Target: Candidate Mask.
Minimizing entails finding optimal pixel labeling for current image.
Equivalent to FCN objective function.




Step 2c¢: Overarching Objective Function

Primary Goal: Label every pixel p correctly.
How: Optimize network parameters 8 and candidate segment labels.

min Eo + AES
d.{ls} Z( )




Step 3 - Strawman: Training Algorithm

1. Generate and label initial candidate masks
2. For each semantic label, pick candidate mask minimizing objective function
3. Assign all other pixels to background
4. Update Network Parameters using one training epoch - all images are visited once
5. Update Mask labeling on all images using the updated network

min 2(8 + A&EF)

¢.{ls}




Step 3: Training Algorithm

1. Generate and label initial candidate masks
2. For each semantic label, randomly sample candidate mask from the first k
minimizing objective function
3. Assign all other pixels to background
4. Update Network Parameters using one training epoch - all images are visited once
5. Update mask labeling on all images using the updated network

min Z(E + A&EF)

#.4{ls}




BoxSup: Putting it all Together

1. Transfer Learning using ImageNet for Model Initialization

2. Generate and label initial candidate masks using Unsupervised Region Proposal
3. Perform Training Algorithm for a number of Epochs

Outcome: Segmentation Network ready to be applied directly on images

train image
with gt boxes

4 BoxSup training

Figure 1: Overview of our training approach supervised by bounding boxes.




Performance Metrics

Comparing Supervision Strategies

data VOC train VOC train + COCO
total # 10,582 133,869
supervision || mask box semi mask semi
mask # 10,582 - 1.464 | 133,869 | 10582
box # - 10,582 | 9,118 - 123,287
mean loU 63.8 62.0 63.5 68.1 68.2

Table 1: Compansons of supervision in PASCAL VOC
2012 validation.




Error Analysis

Semantic Segmentation Error Types:
® Recognition Errors: Confusion in recognizing object
® Boundary Errors: Misalignment of pixel-level labels at object boundary

Bounding box annotations — Extra Instances for Recognizing Objects
Expectation: Recognition Error Reduction

Evaluation Technique: Separate Boundary from Interior Regions of the object
Create bands of various pixel lengths around the ground truth boundaries.




Evaluation Technique: Separate Boundary from Interior Regions of the object
Create bands of various pixel lengths around the ground truth boundaries.

Improvement in recognition
accuracy in interior regions.

S Improvement in boundary

# -
3 - 4 regions is secondary (due to
2 = l CRF post-processing).
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' VOC mask (interior) | More boxes/instances — Better
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Reducing Recognition Error

(a) image {b) ground-truth (c) baseline (d) BoxSup




masks mean IoU EStl m ated M dS kS fO I

rectangles 52.3 Supervision
GrabCut 55.2 Iteratively updating the masks by the
WSSL [25] 58.5 networks yield higher performance.
ours w/o sampling 59.7
g Random sampling strategy for data
ours 62.0

augmentation and higher sample variance.

training image




Comparison with other FCN-augmented

models

method sup. mask # box # | mloU
FCN [22] mask V 10k -] 622
DeepLabCRF [5] | mask V 10k -| 664
WSSL [25] box - Viok| 604
BoxSup box - Viok | 646
BoxSup semi V 1.4k Vo | 66.2
WSSL [25] | mask | V+C 133k -1 704
BoxSup semi V 10k Cl23k | 710
BoxSup semi V 10k | Vor+C 133k | 73.1
BoxSup+ semi V 10k | Vor+C 133k | 75.2




Quick Note on BoxSup+

Test-time Scale Augmentation

e Compute pixel-wise prediction scores at three image scales: 80%, 100%, 120%
e Bilinearly rescale the score maps to the original size and average scores per pixel.




BoxSup Conclusions

Failure of recognizing objects (i.e. Recognition Error) is the main
obstacle for semantic segmentation right now.

Large-scale data experimentally proven to help in this area.

Bounding box annotation-based models enable bigger data
approaches to semantic segmentation, leading to comparable
performance to state-of-the art models.

Novel test-time augmentation: Boxsup+







Starting Point: Weak Supervision

e Image-level labels (presence or absence of class)
e Cheap to obtain

e Labeling procedure:

o For each image, label class as present (at least one pixel
has this class) or absent

person
horse
background

Slide Credit: Deepak Pathak ft. Rohan Doshi






Point Supervision at a Glance

Goal: Reduce Training-time Cost without deteriorating Test-time Accuracy.
e Annotators point to an object of a particular class if one exists.

e Introducing Objectness Potential into the training loss-function — Objectness Prior
to guide the training of the CNN to help separate objects from background.

e How can one make the most out of a fixed annotation budget?

Benchmark: PASCAL-VOC 2012




Motivation: Pixel Level Annotations are
Costly

Scarce

Commercially Expensive
Tens of minutes to annotate an image

Not explicitly harnessed

Weak Supervision Alternatives: Image-level Labels, Bounding Boxes, Squiggles, etc.
Unexplored: Training-time CNN Point Supervision




Point Supervision:

Image-Level Labels
+

Point Supervision per Object
_|_

Objectness Prior




Core Trade-off;

Training-time Cost
Vs
Test-time Accuracy




Key Implementation Points

Supervised points only provided at training-time — no human input at test-time.

® Baseline = Typical semantic segmentation CNN network (FCN in this case):
W x H image — W x H x N score map — W x H per-pixel predictions

e N =number of classes the CNN has been trained to recognize

Focus: Choice of appropriate objective function.




Full Supervision Loss Function

Goal: Optimize sum of per-pixel cross-entropy errors estimated using the softmax loss.
Per-pixel ground truth labels G_i known.

Lpiz(8.G) = =) log(Sic,)
1=l




Recap: Multi-class MIL Loss

(J}l,yl) = arg max il (:L’, y) Vie L1 e Maximize classification score

V( Y) based on each pixel-instance
e Takes advantage of inter-class
= MILLOSS = |£ | Z log Py (1, 31) competition to narrow down
I lEL] instance hypotheses
L: Label set of present classes _
(x,, y): max scoring pixel in coarse heat-maps of a class I ;

p(x1, yl): output heat-map for the 1" label at location (x, y)

- -log(x)

Slide Credit: Rohan Doshi



Image-Level Supervision Loss Function

Goal 1: Encourage each class present in the image to have high probability on at least
one pixel in the image.
Goal 2: Encourage each class not present in the image to have low probability on all
pixels in the image.
Info available: which classes are present (set L) and which are not (set L’)

Liin(S, Ly L) = —m ) " log(St.c) — |77| > log(1 - S,.c)

ce L cel’

with {. = arg max S;.
el




Point-Level Supervision Loss Function

Goal 0: Optimize sum of per-pixel cross-entropy errors on supervised pixels.
Goal 1: Encourage each class present in the image to have high probability on at least

one pixel in the image.
Goal 2: Encourage each class not present in the image to have low probability on all
pixels in the image.
Info available: Supervised pixel classes + sets L and L’

Lpoint(8,G, L, L") = Limg(S. L, L") = Y ailog(Sia;)
icI,




Setting a_i: Annotation Methods

At most 1 Point Annotation per Object Class — a_i is uniform for every point.
Multiple annotators performing (1) — a_i represents the confidence of the
accuracy of the annotator providing that point.

3. 1 Point per Object Instance— a_i corresponds to the order of point annotation.

Lpoint(8,G, L, L") = Limg(S. L, L") = Y ailog(Sia;)
icI,




Introduction to Objectness Prior

Measures likelihood an image window is part of an object.

e Computed from 35 images depicting a broad range of classes using mix of low level
features (e.g.edges, corners, loops etc)

® Pixel score: Average of scores of all windows it containing it.

® Precomputed — 0.28 seconds of extra annotation per second

Function: Better defines spatial extent of recognized objects




Objectness Prior Loss Function

Goal: Infer the spatial extent of the object.
Objectness P_i: Probability pixel i belongs to a foreground object class.

L;(S, P) = —I%IZP' log ( Y Sic| +(1-P)log[1-) S
1=l ce© ceQ
Pixels with high Pi values — Place probability mass on object classes.
Pixels with low Pi values — Place probability mass on background class.
L_obj requires no human supervision — Can be combined with any loss.




Objective Function

Goal: Avoid local minima that over/under-define spatial extent of class instances

Lon;(S, P) = —I;—I Y Plog (Z s,-() +(1—P,)log (1 -y s,-r)

17 ce© ce®

combined with

Lpoint(S,G, L, L") = Limg(S, L, L") = Y aulog(S:z;)
sicI,




Objective Function Minimization Achieves

Goal 0: Optimize sum of per-pixel cross-entropy errors on supervised pixels.
Goal 1: Encourage each class present in the image to have high probability on at least
one pixel in the image.

Goal 2: Encourage each class not present in the image to have low probability on all
pixels in the image.

Goal 3: Avoid local minima that over/under-define spatial extent of class instances

Levels of supervision

# person

Full Image-level Point-level Objectness prior




Crowdsourced Annotation

Crowdsourced annotations via Amazon Mechanical Turk
Dataset: PASCAL VOC 2012 (20 object classes)

1Point vs AllPoint annotations; Squiggle-Level Annotations reproduced
Quality Control via evaluation images incorporated into the dataset.

Much smaller annotation errors compared to bounding box annotations

Supervision Category Average Annotation Time per Image
Image-Level 20 seconds
Full (Pixel-Level) 239.7 seconds
Pointisval 1 point per object class 22.1 seconds
1 point per object instance 23.3 seconds
Squiggle-Level 34.9 seconds







Qualitative Evaluation

Original Image-level Image-level Point-level Full
imnage supervision  objectness - objectness supervision

groure .L.,- .m:q Bhnrw | .Im:{c«tnke p:«r;m' | {sheep




Quantitative Evaluation (1)

Key Metric: Mean 10U averaged over the 21 PASCAL VOC classes.
Baseline image-level supervision with no additional info: 25.1%

Supervision Time (s) Model mlOU (%)
Image-level labels 20.0 Img 29.8
Image-level labels 20.3 Img + Obj 32.2
1 Point 22.1 Imyg 35.1
1Point 22.4 Img + Obj 42.7
AllPoints 23.6 Img + Obj 42.7
AllPoints (weighted) 23.5 Img + Obj 43.4
1 Point (3 annotators) 29.6 Img + Obj 43.8
1 Point (random annotators) 22,4 Img + Obj 42.8 - 43.8
1 Point (random points) 240 Img + Obj 46.1
Full supervision 239.7 Img 58.3
Hybrid approach 24.5 Img + Obj 53.1

1 squiggle per class 35.2 Img + Obj 49.1




Quantitative Evaluation (2)

Point-Level Supervision Variations

Supervision Time (s) Model mlOU (%)
Image-level labels 20.0 Img 29.8
Image-level labels 20.3 Img + Obj 32.2
1 Point 22.1 Imyg 35.1
1Point 22.4 Img + Obj 42.7
AllPoints 23.6 Img + Obj 42.7
AllPoints (weighted) 23.5 Img + Obj 43.4
1 Point (3 annotators) 29.6 Img + Obj 43.8
1 Point (random annotators) 22,4 Img + Obj 42.8 - 43.8
1 Point (random points) 240 Img + Obj 46.1
Full supervision 239.7 Img 58.3
Hybrid approach 24.5 Img + Obj 53.1

1 squiggle per class 35.2 Img + Obj 49.1




Quantitative Evaluation (3)

Training-time Cost vs Test-time Accuracy Trade-off
Decreasing returns of full supervision with respect to cost

Supervision Time (s) Model mlOU (%)
Image-level labels 20.0 Img 29.8
Image-level labels 20.3 Img + Obj 32.2
1 Point 22.1 Imyg 35.1
1Point 22.4 Img + Obj 42.7
AllPoints 23.6 Img + Obj 42.7
AllPoints (weighted) 23.5 Img + Obj 43.4
1 Point (3 annotators) 29.6 Img + Obj 43.8
1 Point (random annotators) 22,4 Img + Obj 42.8 - 43.8
1 Point (random points) 240 Img + Obj 46.1
Full supervision 239.7 Img 58.3
Hybrid approach 24.5 Img + Obj 53.1

1 squiggle per class 35.2 Img + Obj 49.1




Quantitative Evaluation (4)

Training-time Cost vs Test-time Accuracy Trade-off

Bq —
Supervision mlIOU (%) [CreoiCLRY
= : [HongN®S15
Full (883 imgs) e o 'Wo"“""’.mcvp:ssr
Image-level (10.582 imgs) 29.8 ‘ [
Squiggle-level (6.064 imgs) 40.2 3 | T .
. Wt c o
Point-level (9,576 imgs) 42.9 g 40?’””'”':2::50(:“5{ [PrireroCVeRI 5
L3
Table 3. Accuracy of models on the PAS- | .
CAL VOC 2012 validation set given a
fixed budget (and number of images an- 24 & 6 5 8 i
notated within that budget). Point-level CRSL R ewme e 0f RO

supervision provides the best tradeofl be-

tween annotation time and accuracy. De- Figf 5. Results w_xﬂll"wut fgs«iurcv e
tails in Section 5.5 straints on the PASCAL VOC 2012 (fest
set. The x-axis is log-scale.




Point-Level Supervision Summary

Point-Level Supervision to reinforce Image-Level Supervision.

e Point-Level Supervision directly incorporated in objective function for CNN
training.

e Objectness Prior helps infer about spatial extent of the object.
e 1Point+Obj+Img achieves best performance under fixed annotation time budget.

Hybrid approach achieves best accuracy-cost tradeoff.




Presenter’'s Note

Experimental rather than rigorous mathematical proofs

e |tisall about identifying the optimal objective function or the one that makes
one’s hypothesis work

e Why BoxSup+ perform better? — Intuition driven field based on past experience

e Decreasing marginal returns of extra sample (is higher efficiency really necessary
once you have a huge dataset of pixel-based annotated examples to train on)

Segmentation accuracies are still very low




