
Intro to Recurrent Neural Networks
COS 598B
William Hinthorn

This Lecture:

1. Segmentation Review

2. Intro to Polygon-RNN

3. Modeling Sequences

1. Vanilla RNN

2. Training and Problems

3. LSTM

4. Convolutional LSTM

4. Vertex Prediction using Conv-LSTM

Previously:
● Instance-segmentation
● Evaluation Metrics: mAP; mIoU

Image Source: http://www.robots.ox.ac.uk/~aarnab/

Intersection over Union
Review

Image Source: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Problem: Standard Annotation Methods

● Tedious polygon drawing

Image Source: Labelme2.csail.mit.edu

Can we automate?

Previously:
● Sparse annotation methods

Image Sources: Bearman, Russakovsky, Ferrari, Li, What’s the Point;
Dai, He, Sun, BoxSup; Ft. Yannis Karakozis

Previously:
● Semi-automatic segmentation

○ Graphical models with smoothness
term

○ No shape prior
● GrabCut

● Too error-prone for benchmark
creation

● Mistakes are tedious to correct by hand

Image Source: Grabcut tutorial from www.opencv.org

Outline

1. Review

2. Intro to Polygon-RNN

3. Modeling Sequences

1. Vanilla RNN

2. Training and Problems

3. LSTM

4. Convolutional LSTM

4. Vertex Prediction using Conv-LSTM

Polygon-RNN
Castrejón, Kundu, Urtasun, and Fidler
Honorable Mention for Best Paper Award CVPR ‘17

Polygon-RNN Goals

● Maintain high annotation accuracy

○ Benchmark-grade masks

○ Evaluation Metric: agreement (in IoU) with ground-truth

● Reduce annotation cost

○ Measured using average instance annotation time

○ Number of clicks (i.e. corrections) per image

Model Overview
1. Adapt VGG-161 for feature extraction
2. Two-layer Convolutional LSTM for polygon vertex inference

1K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CVPR ‘14

Step 1: Feature Extraction

Review: VGG-16
Simonyan and Zisserman; ICLR ‘14

● Simple, modular structure (feedforward)
● Single Stride

● Reduced loss of information

● Stacked with small kernels

● Large receptive field

● Fewer learnable parameters
● Rectified Linear Units (ReLU) (like AlexNet)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

Maxpool

FC 4096 x 2

FC 1000

Softmax

● Remove final pooling layer and fully
connected layers (classifier)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

Maxpool

FC 4096 x 2

FC 1000

Softmax

VGG-16 for Polygon-RNN

● Remove final pooling layer and fully connected
layers (classifier)

● Concatenate outputs of varying granularity
○ "See the object” (low res) and follow boundaries

(high res)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2 (112 x 112)

Maxpool

Conv3-256 x 3 (56 x 56)

Maxpool

Conv3-512 x 3 (28 x 28)

Maxpool

Conv3-512 x 3 (14 x 14)

VGG-16 for Polygon-RNN

MaxpoolConv3x3

Conv3x3

Conv3x3

Conv3x3

Bilinear
Up-sampliing

28x28x512

● Remove final pooling layer and fully
connected layers (classifier)

● Concatenate outputs of varying granularity

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

VGG-16 for Polygon-RNN

conv3x3
Feature Fusion:
Convolve + resize +
concatenate

Output Features:
28x28x128

● Input: image crops from annotated
bounding boxes (resized to 224x224)

Input Image Crop: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

conv3x3
Feature Fusion:
Convolve + resize +
concatenate

Output Features:
28x28x128

Step 2: Vertex Prediction

Choices
● Single Shot

○ Simple and fast

○ More clicking (For correction)

● Predict vertices sequentially

○ Requires more design decisions and
separate inferences (~250 ms/inf) for
each vertex

○ Allows for human-in-the-loop annotation
to increase accuracy

Polygon-RNN Steps
1. Extract features using modified VGG-16
2. Predict polygon vertices using a 2-layer

convolutional LSTM (16 channel hidden layer)

Outline

1. Review

2. Intro to Polygon-RNN

3. Modeling Sequences

1. Vanilla RNN

2. Training and Problems

3. LSTM

4. Convolutional LSTM

4. Vertex Prediction using Conv-LSTM

What is an RNN?

RNN Overview

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Contents stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Why RNN?
1. Linear Dynamical Systems (LDS)

1. Limited to linear state updates (linear dynamics…)

2. Hidden Markov Models (HMM)
1. Discrete hidden states - can only remember log(N)

bits about prior data

3. RNNs address these limitations
1. Efficient information storage for “long-range”

dependencies
2. Nonlinear state updates
3. Turing Complete

Reference: https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf

x

RNN

y
usually want to
predict a vector
at some time
steps

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

RNN Flexibility

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Vertex Prediction!
(without annotator)

E.g. video captioning or
translation E.g. video frame tagging

E.g. spam filterE.g. classification

Elman Networks1 (Vanilla RNN)
[Elman 1990]

x

RNN

y

The state consists of a single “hidden” vector h.
Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
1Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211.

Jordan Networks1

[Jordan 1997]

x

RNN

y

 - Less powerful than Elman Networks BUT easier to train (via
parallelization)2

 - Allows for external intervention

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
1Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach".
2see e.g. http://www.deeplearningbook.org/contents/rnn.html

Interpretable!

Computational Graph

h0 fW h1 fW h2 fW h3 …
x1

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

• Note: by removing h_0, the graph becomes equivalent to that of a normal MLP

What about h0?

● Could arbitrarily choose a starting value (e.g. 0.5)

● Could start with a computed average

● Could treat as a parameter to learn via backprop1

● Polygon-RNN chooses to start with 0

○ Represents “total ignorance”

○ Midpoint for range of tanh

* Hinton recommends/ed this in CS2535

Computational Graph

h0 fW h1 fW h2 fW h3

x3

…
x2x1

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Computational Graph

h0 fW h1 fW h2 fW h3

x3

…
x2x1W

“Share the weights” - Re-use the same weight matrix at every time-step

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Computational Graph For Vertex Prediction

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

h0 fW h1 fW h2 fW h3

yT

…
x

W

hT

y3y2y1

Backpropagation through time (BPTT)

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Loss

Forward through entire sequence
to compute loss, then backward
through entire sequence to
compute gradient

Truncated BPTT
Loss Run forward and

backward through
chunks of the sequence
instead of whole
sequence

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Truncated BPTT

Loss

Carry hidden states
forward in time
forever, but only
backpropagate for
some smaller
number of steps

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Truncated BPTT
Loss

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of h0
involves many factors of W
(and repeated tanh)

Slide stolen from CS519. Credit: Fuxin Li

BPTT Problems

● Gradient will contain terms that grow like ᫇ᬈ

● What happens for singular values >> 1 (e.g. 4)?

“For Whoever Shares, to Him
More Gradient Will Be Given

- corruption of Mark 4:25”
- Prof. Sebastian Seung

(But sometimes you can have too much of a good thing)

Quote taken completely out of context from COS485. Credit and apologies to Sebastian Seung

Slide stolen from CS519. Credit: Fuxin Li
1Pascaon, Mikolov, Bengio. “On the difficulty of training recurrent neural networks”

BPTT Problems

● Gradient will contain terms that grow like ᫇ᬈ

● What happens for singular values >> 1 (e.g. 4)?

○ Exploding Gradients

○ Gradient Clipping1 (threshold the norm of the gradient)

● What happens for singular values << 1 (e.g. 0.2)?

○ Vanishing Gradients

○ LSTM (Next)

Adding Memory

Vanilla RNN to LSTM1

Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
1Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

RNN LSTM

Single hidden
layer Memory Cell

LSTM Gradient Flow
[Hochreiter et al., 1997]

Core idea: Add a cell state to allow for uninterrupted gradient flow

Note: Additive interactions are reminiscent of identity connections in ResNet1

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
1Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. CVPR ‘15

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from
before (h)

W

i

f

o

g

vector from
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x (|x| + h [+1]) 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
o: Output gate, How much to reveal from cell
g: Candidate cell state , What to write to cell (later)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997 Ft. CS231n and Fei-Fei Li & Justin Johnson & Serena Yeung

LSTM Gating and Activation Functions
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

●

LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The forget gate ft erases information from the cell state

○ Imagine annotator altered a vertex; LSTM must forget its past trajectory

LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The input gate it scales the candidate values to modulate how much to update the cell state
● The candidate cell state represents the new values which will replace/augment the existing

cell state
○ = Output of a vanilla RNN

LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The cell state Ct is the sum of the information remembered and the information observed which
is deemed to be important

LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The output gate ot determines what information from the cell state the cell wishes to output
● The cells state Ct is squashed by a hyperbolic tangent before being gated
● If we wish to make an inference yt, simply pass ht through an fc classifier layer

LSTM Summary
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

● Sigmoid functions clearly model gating
● Tanh empirically works better than ReLU
● Cell state allows for long(er)-term dependency modeling
● Other variants: peepholes, projection layers, and more

○ Is LSTM redundant? (GRUs)

Outline

1. Review

2. Intro to Polygon-RNN

3. Modeling Sequences

1. Vanilla RNN

2. Training and Problems

3. LSTM

4. Convolutional LSTM

4. Vertex Prediction using Conv-LSTM

Convolutional LSTM
Xingjian, Chen, Wang, Yeung, Wong, and Woo.; NIPS ‘15

Modeling Sequences of 2D Observations

● Capture spatio-temporal relationships

● Reduce parameter space

Equations:

Vanilla LSTM

Convolutional LSTM

Comments

● Initialize cell and hidden states to 0

○ “Total ignorance” of the past

● Pad the hidden states

○ “Same” type convolution

○ Represents the ignorance of the outside world

● Larger convolutional kernels can capture greater activity

● Only proven to work for low-res features (16x16 to 28x28)

RNN Review

● RNNs allow for a lot of flexibility in architecture design

● Vanilla RNNs are simple but don’t work very well

● Backward flow of gradients in RNN can explode or vanish.

● Exploding? -> Clip gradients.

● Vanishing? -> use additive interactions (LSTM, GRU, etc.)

● Better/simpler/faster architectures are a hot topic of current research

● Convolutional LSTM improves on over-parametrized LSTM BUT requires low-res images

● Better understanding (both theoretical and empirical) is needed.

Contents stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Back to Polygon-RNN

Polygon-RNN Steps
1. Extract features using modified VGG-16
2. Predict polygon vertices using a 2-layer

convolutional LSTM (16 channel hidden layer)

Vertex Prediction at step t
● Input x is a concatenated tensor:

○ Extracted features f from VGG (128 channels)

○ Vertices y1, yt-2, & yt-1 or prior outputs of the ConvLSTM

■ Similar to a Jordan Network!

Output Format

● Vertex prediction = Classification
● D x D+1 OHE grid
● D+1 for End-of-sequence token

T-1

T

What about t=1?
● First vertex of polygon is not uniquely defined

○ Use a second (identical) CNN for initial inference

○ *Note: the weights are NOT shared between the two VGG nets

Input Image Crop: (224x224x3)

Adapted VGG-16

conv3x3

Convolve + resize
+ concatenate

Boundary Prediction
(Conv 3x3)

Polygon Vertices
(Conv 3x3)

Start

Training
● Cross-Entropy at each time-step (for RNN)

○ No explicit distance metric
● Smooth ground-truth labels
● Data Augmentation

○ Random flips

○ Random context expansion (10%-20% of original BB)

○ Random selection of starting index

Inference
● “Prediction Mode”

○ Automatically predict all vertices until end-of-sequence token is
generated

● Annotator in the Loop
○ Predict vertices one-at-a-time
○ Annotator may move a vertex, which is then fed into the Conv-LSTM

Evaluation Baselines

DeepMask
[Pinheiro et al., 2015]

P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning to segment object candidates,” in NIPS, 2015.

SharpMask
[Pinheiro et al., 2016]

• Skip layers mainly average outputs, which hurts
instance-level segmentation accuracy

• Refinement module w/ inputs km and kf:
1. convolving kf

2. concatenate kf and km,

3. Convolve to reduce number of channels,

4. Up-sample

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and Piotr Dollar, “Learning to refine object segments,” in ECCV, 2016.

Quantitative Evaluation

*IoU is computed for each instance
Analysis: Polygon-RNN degrades for large instances
due to small (28x28) output resolution

Reminder:
• IoU is upper-bounded when using bilinear up-sampling
• Small output resolution of Polygon-RNN is a hindrance

Source: Long, Shelhammer, Darrell. Fully Convolutional Neural Networks for Semantic Segmentation

Annotator in the Loop Results

Note: The authors claim that each click requires “comparable time” to Grabcut but do not report
annotation time results, choosing instead to focus on the number of clicks. They do report that it takes
~250ms per rnn inference.

Note 2: Authors don’t compare # of clicks with GrabCut where the algorithm is initialized with a
deeply-learned mask (e.g. SharpMask)

Grabcut P-RNN
(T=4)

P-RNN(T=
1)

Avg. Time 42.2 N/A N/A

Clicks 17.5 5 9.6

mIoU 70.7% 79.7% 85.8%

Subset of Images Full Dataset

Annotator in the Loop Results

Comparison with an Expert Annotator

Testing on Kitti1

● Larger average instances put DeepMask
and SharpMask back ahead of automatic
Polygon-RNN

1Geiger, Lenz, and Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite; CVPR, ‘12

Qualitative Results

Qualitative Results

T=1AutomaticGT

• Authors’ threshold-based correction is limited.
• Memory of LSTM is complicated

Summary and Extensions
● Polygon-RNN frames vertex prediction as a binary classification task
● Interesting that no explicit distance metric is used for the loss

○ Only cross-entropy and local smoothing
● Annotation speedup of 4.74 (measured in clicks)

○ Though per-click speed may be slower to allow for RNN inference time…

● Questions and extensions:
○ Close analysis: what amount of error is attributable to the feature extraction module, and what amount is due

to weaknesses in the RNN inference module?

■ Could swap VGG for e.g. ResNet, DenseNet, or a stacked hourglass network

■ Could inference be improved at higher resolution using larger, stacked, or dilated ConvLSTM kernels?

■ Could we adapt e.g. Grid LSTM to better model spatial dependencies?

○ Should thresholding analysis be done using an area-approach rather than the closest vertex?

○ Could the framework be extended from “things” to “stuff” (semantic segmentation boundaries)?

○ How does this model perform on more complicated datasets (e.g. ADE20K)?

○ Amodal Polygon-RNN?

Appendix:
Other Cool RNN Applications in Vision

RNNs on Spatial Sequences

Liu, Pan, Yang, Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network; ECCV ‘16

RNN as a CRF

Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr; Conditional Random Fields as Recurrent Neural Networks; ICCV ‘15

A CRF
post-processor can
be constructed by
sharing the filter
weights

A single iteration of
the mean field
algorithm can be
modeled as a stack
of CNN filters

VQA (Module 2)

Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr; Conditional Random Fields as Recurrent Neural Networks; ICCV ‘15

…. but replete with
learned biases.

With surprising
accuracy for some
questions …

