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4. Vertex Prediction using Conv-LSTM



Previously:
● Instance-segmentation
● Evaluation Metrics: mAP; mIoU

Image Source: http://www.robots.ox.ac.uk/~aarnab/



Intersection over Union 
Review

Image Source: https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/



Problem: Standard Annotation Methods

● Tedious polygon drawing

Image Source: Labelme2.csail.mit.edu

Can we automate?



Previously:
● Sparse annotation methods

Image Sources: Bearman, Russakovsky, Ferrari, Li, What’s the Point;
Dai, He, Sun, BoxSup; Ft. Yannis Karakozis



Previously:
● Semi-automatic segmentation

○ Graphical models with smoothness 
term

○ No shape prior
● GrabCut

● Too error-prone for benchmark 
creation

● Mistakes are tedious to correct by hand

Image Source: Grabcut tutorial from www.opencv.org
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Polygon-RNN
Castrejón, Kundu, Urtasun, and Fidler
Honorable Mention for Best Paper Award CVPR ‘17



Polygon-RNN Goals

● Maintain high annotation accuracy

○ Benchmark-grade masks

○ Evaluation Metric: agreement (in IoU) with ground-truth

● Reduce annotation cost

○ Measured using average instance annotation time 

○ Number of clicks (i.e. corrections) per image



Model Overview
1. Adapt VGG-161 for feature extraction
2. Two-layer Convolutional LSTM for polygon vertex inference

1K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CVPR ‘14



Step 1: Feature Extraction



Review: VGG-16
Simonyan and Zisserman; ICLR ‘14

● Simple, modular structure (feedforward)
● Single Stride

● Reduced loss of information

● Stacked with small kernels

● Large receptive field

● Fewer learnable parameters
● Rectified Linear Units (ReLU) (like AlexNet)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

Maxpool

FC 4096 x 2

FC 1000

Softmax



● Remove final pooling layer and fully 
connected layers (classifier)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

Maxpool

FC 4096 x 2

FC 1000

Softmax

VGG-16 for Polygon-RNN



● Remove final pooling layer and fully connected 
layers (classifier)

● Concatenate outputs of varying granularity
○ "See the object” (low res) and follow boundaries 

(high res)

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2 (112 x 112)

Maxpool

Conv3-256 x 3 (56 x 56)

Maxpool

Conv3-512 x 3 (28 x 28)

Maxpool

Conv3-512 x 3 (14 x 14)

VGG-16 for Polygon-RNN

MaxpoolConv3x3

Conv3x3

Conv3x3

Conv3x3

Bilinear 
Up-sampliing

28x28x512



● Remove final pooling layer and fully 
connected layers (classifier)

● Concatenate outputs of varying granularity

Input Image: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

VGG-16 for Polygon-RNN

conv3x3
Feature Fusion:
Convolve + resize + 
concatenate

Output Features:
28x28x128



● Input: image crops from annotated 
bounding boxes (resized to 224x224)

Input Image Crop: (224x224x3)

Conv3-64 x 2

Maxpool

Conv3-128 x 2

Maxpool

Conv3-256 x 3

Maxpool

Conv3-512 x 3

Maxpool

Conv3-512 x 3

conv3x3
Feature Fusion:
Convolve + resize + 
concatenate

Output Features:
28x28x128



Step 2: Vertex Prediction



Choices
● Single Shot

○ Simple and fast

○ More clicking (For correction)

● Predict vertices sequentially

○ Requires more design decisions and 
separate inferences (~250 ms/inf) for 
each vertex

○ Allows for human-in-the-loop annotation 
to increase accuracy



Polygon-RNN Steps
1. Extract features using modified VGG-16
2. Predict polygon vertices using a 2-layer 

convolutional LSTM (16 channel hidden layer)
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What is an RNN?



RNN Overview

x

RNN

y
We can process a sequence of vectors x by  
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Contents stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Why RNN?
1. Linear Dynamical Systems (LDS)

1. Limited to linear state updates (linear dynamics…)

2. Hidden Markov Models (HMM)
1. Discrete hidden states - can only remember log(N) 

bits about prior data

3. RNNs address these limitations
1. Efficient information storage for “long-range” 

dependencies
2. Nonlinear state updates 
3. Turing Complete

Reference: https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf

x

RNN

y
usually want to  
predict a vector 
at  some time 
steps

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



RNN Flexibility

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Vertex Prediction!
(without annotator)

E.g. video captioning or 
translation E.g. video frame tagging

E.g. spam filterE.g. classification



Elman Networks1 (Vanilla RNN)
[Elman 1990]

x

RNN

y

The state consists of a single “hidden” vector h.
Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
1Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science. 14 (2): 179–211.



Jordan Networks1

[Jordan 1997]

x

RNN

y

 - Less powerful than Elman Networks BUT easier to train (via 
parallelization)2

 - Allows for external intervention

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung
1Jordan, Michael I. (1997-01-01). "Serial Order: A Parallel Distributed Processing Approach". 
2see e.g. http://www.deeplearningbook.org/contents/rnn.html

Interpretable!



Computational Graph 

h0 fW h1 fW h2 fW h3 …
x1

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

• Note: by removing h_0, the graph becomes equivalent to that of a normal MLP



What about h0?

● Could arbitrarily choose a starting value (e.g. 0.5)

● Could start with a computed average 

● Could treat as a parameter to learn via backprop1

● Polygon-RNN chooses to start with 0

○ Represents “total ignorance”

○ Midpoint for range of tanh

* Hinton recommends/ed this in CS2535



Computational Graph

h0 fW h1 fW h2 fW h3

x3

…
x2x1

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Computational Graph

h0 fW h1 fW h2 fW h3

x3

…
x2x1W

“Share the weights” - Re-use the same weight matrix at every time-step

hT

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Computational Graph For Vertex Prediction

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

h0 fW h1 fW h2 fW h3

yT

…
x

W

hT

y3y2y1



Backpropagation through time (BPTT)

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Loss

Forward through entire sequence 
to  compute loss, then backward 
through  entire sequence to 
compute gradient



Truncated BPTT
Loss Run forward and 

backward  through 
chunks of the  sequence 
instead of whole  
sequence

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Truncated BPTT

Loss

Carry hidden states  
forward in time 
forever,  but only 
backpropagate  for 
some smaller  
number of steps

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Truncated BPTT
Loss

Graphics stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient of h0 
involves many  factors of W
(and repeated tanh)



Slide stolen from CS519. Credit: Fuxin Li

BPTT Problems

● Gradient will contain terms that grow like ᫇ᬈ

● What happens for singular values >> 1 (e.g. 4)?



“For Whoever Shares, to Him 
More Gradient Will Be Given 

- corruption of Mark 4:25”
- Prof. Sebastian Seung

(But sometimes you can have too much of a good thing)

Quote taken completely out of context from COS485. Credit and apologies to Sebastian Seung



Slide stolen from CS519. Credit: Fuxin Li
1Pascaon, Mikolov, Bengio. “On the difficulty of training recurrent neural networks”

BPTT Problems

● Gradient will contain terms that grow like ᫇ᬈ

● What happens for singular values >> 1 (e.g. 4)?

○ Exploding Gradients

○ Gradient Clipping1 (threshold the norm of the gradient)

● What happens for singular values << 1 (e.g. 0.2)?

○ Vanishing Gradients

○ LSTM (Next)



Adding Memory



Vanilla RNN to LSTM1

Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
1Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation  1997

RNN LSTM

Single hidden 
layer Memory Cell



LSTM Gradient Flow
[Hochreiter et al., 1997]

Core idea: Add a cell state to allow for uninterrupted gradient flow

Note: Additive interactions are reminiscent of identity connections in ResNet1

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
1Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. CVPR ‘15



Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from  
before (h)

W

i

f

o

g

vector from  
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x (|x| + h [+1]) 4h 4*h

f: Forget gate, Whether to erase cell
i: Input gate, whether to write to cell
o: Output gate, How much to reveal from cell
g: Candidate cell state , What to write to cell (later     )

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation  
1997 Ft. CS231n and Fei-Fei Li & Justin Johnson & Serena Yeung



LSTM Gating and Activation Functions
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

●  



LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The forget gate ft erases information from the cell state

○ Imagine annotator altered a vertex; LSTM must forget its past trajectory



LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The input gate it  scales the candidate values to modulate how much to update the cell state 
● The candidate cell state        represents the new values which will replace/augment the existing 

cell state
○ = Output of a vanilla RNN



LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The cell state Ct is the sum of the information remembered and the information observed which 
is deemed to be important



LSTM Walkthrough
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997 
Image credit to Christopher Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

● The output gate ot determines what information from the cell state the cell wishes to output
● The cells state Ct is squashed by a hyperbolic tangent before being gated
● If we wish to make an inference yt, simply pass ht through an fc classifier layer 



LSTM Summary
[Hochreiter et al., 1997]

Content credit: Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

● Sigmoid functions clearly model gating
● Tanh empirically works better than ReLU
● Cell state allows for long(er)-term dependency modeling
● Other variants: peepholes, projection layers, and more

○ Is LSTM redundant? (GRUs)
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Convolutional LSTM
Xingjian, Chen, Wang, Yeung, Wong, and Woo.; NIPS ‘15



Modeling  Sequences of 2D Observations

● Capture spatio-temporal relationships

● Reduce parameter space



Equations:

Vanilla LSTM

Convolutional LSTM



Comments

● Initialize cell and hidden states to 0

○ “Total ignorance” of the past

● Pad the hidden states

○ “Same” type convolution

○ Represents the ignorance of the outside world

● Larger convolutional kernels can capture greater activity

● Only proven to work for low-res features (16x16 to 28x28)



RNN Review

● RNNs allow for a lot of flexibility in architecture design

● Vanilla RNNs are simple but don’t work very well

● Backward flow of gradients in RNN can explode or vanish.  

● Exploding? -> Clip gradients.

● Vanishing? -> use additive interactions (LSTM, GRU, etc.)

● Better/simpler/faster architectures are a hot topic of current research

● Convolutional LSTM improves on over-parametrized LSTM BUT  requires low-res images

● Better understanding (both theoretical and empirical) is needed.

Contents stolen from CS231n. Credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Back to Polygon-RNN



Polygon-RNN Steps
1. Extract features using modified VGG-16
2. Predict polygon vertices using a 2-layer 

convolutional LSTM (16 channel hidden layer)



Vertex Prediction at step t
● Input x is a concatenated tensor:

○ Extracted features f from VGG (128 channels)

○ Vertices y1, yt-2, & yt-1 or prior outputs of the ConvLSTM 

■ Similar to a Jordan Network!



Output Format

● Vertex prediction = Classification
● D x D+1 OHE grid
● D+1 for End-of-sequence token

T-1

T



What about t=1?
● First vertex of polygon is not uniquely defined

○ Use a second (identical) CNN for initial inference

○ *Note: the weights are NOT shared between the two VGG nets



Input Image Crop: (224x224x3)

Adapted VGG-16

conv3x3

Convolve + resize 
+ concatenate

Boundary Prediction 
(Conv 3x3)

Polygon Vertices
(Conv 3x3)

Start



Training
● Cross-Entropy at each time-step (for RNN)

○ No explicit distance metric
● Smooth ground-truth labels
● Data Augmentation

○ Random flips

○ Random context expansion (10%-20% of original BB)

○ Random selection of starting index



Inference
● “Prediction Mode”

○ Automatically predict all vertices until end-of-sequence token is 
generated 

● Annotator in the Loop
○ Predict vertices one-at-a-time
○ Annotator may move a vertex, which is then fed into the Conv-LSTM 



Evaluation Baselines



DeepMask
[Pinheiro et al., 2015]

P. O. Pinheiro, R. Collobert, and P. Dollar, “Learning to segment object candidates,” in NIPS, 2015.



SharpMask
[Pinheiro et al., 2016]

• Skip layers mainly average outputs, which hurts 
instance-level segmentation accuracy

• Refinement module w/ inputs km and kf:
1. convolving kf

2. concatenate kf and km, 

3. Convolve to reduce number of channels,

4. Up-sample

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and Piotr Dollar, “Learning to refine object segments,” in ECCV, 2016.



Quantitative Evaluation

*IoU is computed for each instance
Analysis: Polygon-RNN degrades for large instances 
due to small (28x28) output resolution 



Reminder:
• IoU is upper-bounded when using bilinear up-sampling 
• Small output resolution of Polygon-RNN is a hindrance

Source: Long, Shelhammer, Darrell. Fully Convolutional Neural Networks for Semantic Segmentation



Annotator in the Loop Results

Note: The authors claim that each click requires “comparable time” to Grabcut but do not report 
annotation time results, choosing instead to focus on the number of clicks. They do report that it takes 
~250ms per rnn inference. 

Note 2: Authors don’t compare # of clicks with GrabCut where the algorithm is initialized with a 
deeply-learned mask (e.g. SharpMask)

Grabcut P-RNN 
(T=4)

P-RNN(T=
1)

Avg. Time 42.2 N/A N/A

Clicks 17.5 5 9.6

mIoU 70.7% 79.7% 85.8%

Subset of Images Full Dataset



Annotator in the Loop Results



Comparison with an Expert Annotator



Testing on Kitti1

● Larger average instances put DeepMask 
and SharpMask back ahead of automatic 
Polygon-RNN

1Geiger, Lenz, and Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite; CVPR, ‘12



Qualitative Results



Qualitative Results

T=1AutomaticGT

• Authors’ threshold-based correction is limited.
• Memory of LSTM is complicated



Summary and Extensions
● Polygon-RNN frames vertex prediction as a binary classification task
● Interesting that no explicit distance metric is used for the loss

○ Only cross-entropy and local smoothing
● Annotation speedup of 4.74 (measured in clicks)

○ Though per-click speed may be slower to allow for RNN inference time…

● Questions and extensions: 
○ Close analysis: what amount of error is attributable to the feature extraction module, and what amount is due 

to weaknesses in the RNN inference module?

■ Could swap VGG for e.g. ResNet, DenseNet, or a stacked hourglass network

■ Could inference be improved at higher resolution using larger, stacked, or dilated ConvLSTM kernels?

■ Could we adapt e.g. Grid LSTM to better model spatial dependencies?

○ Should thresholding analysis be done using an area-approach rather than the closest vertex?

○ Could the framework be extended from “things” to “stuff” (semantic segmentation boundaries)?

○ How does this model perform on more complicated datasets (e.g. ADE20K)?

○ Amodal Polygon-RNN?



Appendix: 
Other Cool RNN Applications in Vision



RNNs on Spatial Sequences

Liu, Pan, Yang, Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network; ECCV ‘16



RNN as a CRF

Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr; Conditional Random Fields as Recurrent Neural Networks; ICCV ‘15

A CRF 
post-processor can 
be constructed by 
sharing the filter 
weights

A single iteration of 
the mean field 
algorithm can be 
modeled as a stack 
of CNN filters



VQA (Module 2)

Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr; Conditional Random Fields as Recurrent Neural Networks; ICCV ‘15

…. but replete with 
learned biases.

With surprising 
accuracy for some 
questions …


