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Open World Annotation

Real-world, natural, datasets include:

▸ Different objects embedded together in 
complex scenes

▸ Occlusion of interesting regions
▸ An open universe with classes not known 

beforehand

MS-COCO was a good example of this intuition; 
Visual Genome extends upon it
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“Cognitive” Tasks

Involve higher-order questions on images; 
closer step to “understanding” images:

▸ Image description synthesis
▸ Visual Question Answering
▸ Intuitional leaps (why?, relationships, 

subjective attributes)

Scene graphs are one way of representing a 
higher-order “knowledge”
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VISUAL GENOME 
DATASET



Visual Genome: Connecting Language and Vision 
Using Crowdsourced Dense Image Annotations

By: Krishna et al., 2016



Visual Genome: Overview
For the following slides: Images Credit: Krishna et al.
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Question-Answer Pairs
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1: Regional Descriptions

Intuition: creating region-based descriptions                
would reduce description of only major features

1. Worker picks three new bounding boxes, describes 
each region uniquely (shown most similar regions)

                                                      ,

2. Algorithm enforces < 0.7 similarity to 
image-specific & global descriptions

3. Worker draws region boxes judged on coverage



Region Statistics



2: Objects & Bounding Boxes

1. Worker given a region and description, extracts 
objects and draws bounding boxes

2. Bounding boxes drawn to satisfy both 
coverage & quality (4px max error)

3. List of previously-extracted objects (from 
alternate descriptions) provided
a. Workers told to join identical objects
b. Stanford’s dependency parser used to 

suggest most likely nouns



Object Statistics



3/4: Attributes / Relationships

Given a region description, region image, 
and object bounding boxes, workers extract 
attributes/relationships and identify the 
objects they apply to

Note: some descriptions have no objects, 
attributes, or relationships

Ex: “It is a sunny day”



Attribute/Relationship Statistics



5: Regional Graphs

Programmatically created based on worker 
identification of relationship and attribute 
links to particular objects in each region



6: Scene Graph

1. Combine objects from different regions 
with bounding box overlap of > 0.9

2. Ask workers to confirm identity
3. Take union of region graphs, merging at 

each repeated node



(Scene Graph Creation)



7: Question-Answer Pairs

▸ Freeform Q-A: Worker creates 8 Q-A pairs 
(>3 categories) per image shown

▸ Region-based Q-A: random large (>5k 
pixels, >4 words in phrase) regions 
selected, workers create a Q-A pair for each

Questions must be precise, unique, 
unambiguous, and either of type 5Ws or “how”



Canonicalization

All objects, attributes, relationships, and 
noun phrases mapped to WordNet synsets:

1. Use NLP tools to extract noun phrases / 
relationship verbs, stem attributes

2. Map each to most frequent synsets
3. Use heuristics to correct common errors
4. Present top 5 potential synsets and 

definitions to workers for verification



Verification

Two processes used:

▸ Majority Voting: 3 workers vote on each 
annotation, 2 must verify correctness

▸ Rapid Judgements: verification method 
to speed up process by 10x



Background: Rapid Judgements

Core idea: Show images super quickly (100ms) to workers, keypress when they see an 
object of a given class. Model the delay to predict the images with those objects

Original paper (+ above image): https://arxiv.org/pdf/1602.04506.pdf

Presentation: https://dl.acm.org/citation.cfm?id=2858115

https://arxiv.org/pdf/1602.04506.pdf
https://dl.acm.org/citation.cfm?id=2858115
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Table Credit: Krishna et 
al.



Table Credit: Krishna et 
al.



Visual Genome vs. MS-COCO:
Both based on real-world images, 
with segmentation and descriptions
● 108k vs. 300k photos

○ Subset of COCO!
● 34k object classes vs. 

80 object classes
● >50 regional descriptions vs. 

5 sentences about each image

Table Credit: Krishna et al.



Table Credit: Krishna et 
al.

Visual Genome vs. VQA:
Both include open ended 
question-answer pairs on real-world 
images. Multiple pairs per image.
● 1.8M vs. 614k Q-A pairs
● 57% vs. 89% of answers are 

single-word
○ 39% of VQA answers are 

yes/no!



Key Metrics

More Dense:

▸ 35 objects per image (OM+)
▸ 144k unique objects, relationships, and 

attributes (OM+)
▸ 1.4M Q-A pairs (more than any other)
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Key Metrics

More Comprehensive/Diverse:

▸ More object categories (34k total)
▸ Object-specific attributes: size, pose, emotion, etc. 
▸ More semantically diverse captions, but still 

imperfect (2x more men annotated than women)



Semantic Diversity Detection

1. Use word2vec to convert each word to a 
300-dimensional vector

2. Hierarchical agglomerative clustering 
on vector representations -> 71 clusters

3. 5 descriptions randomly 

chosen per image



Findings: Attribute Graphs
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Findings: Affordances

Using typical relationships, 
can learn common sense 
knowledge like couches have 
pillows on them, zebras eat 
hay, etc.



Question: Have any researchers taken advantage of 
these kinds of affordance relationships?

Visual Relationship Detection with Language 
Priors (link)

By: Lu et al., 2016

https://arxiv.org/pdf/1608.00187.pdf


IR: Key Challenge

IR: Dataset

IR: Implementation

IR: Experiments/Results

MP: Key Challenge

MP: Implementation

MP: Experiments/Results
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73.
SCENE GRAPH 
APPLICATIONS



Image Retrieval using Scene Graphs

By: Johnson et al., 2015
Note: Johnson also collaborated on VG, and will 
have his faculty interview here on March 29th!



Key Challenge: 
Using Scene Graphs for Image Retrieval

Intuition: Scene graphs can represent what 
you actually want better than plaintext

Problem: Given a scene graph query, 
identify the image that best matches it

Evaluation:

1. Performance on hyper-precise graphs
2. Performance on more simple, 

open-ended graphs
3. Performance generating accurate object 

localizations 1

For the following slides: Images Credit: Johnson et al.



Scene Graph Formalization

C: Set of object classes

A: Set of attribute types

R: Set of relationships

                   , one object

                       , all objects

                     , set of edges

Scene Graph G = (O, E)

B: Set of bounding boxes

Grounding: 

      : grounding of object o       
        to bounding box b

Scene graphs include objects, attributes, and 
relationships, and are grounded to an image.



Dataset

▸ 5k images, intersection of MS-COCO + YFCC100m
▸ Uses AMT workers to write object, attributes, and 

relationships with an open vocabulary
▸ Uses AMT workers to draw bounding boxes
▸ Uses AMT workers to verify all attributions

For experiments, Johnson et al. discarded object + 
attribute classes with < 50 occurrences and 
relationships with < 30 occurrences

Note: This paper was written prior to Visual Genome’s release
2



Dataset Details



Dataset Findings



CRF Formulation

Task: Given a scene graph, want to retrieve images

Solution: For a given graph, measure ‘agreement’ 
between it and all unannotated images 

▸ Use a Conditional Random Field (CRF) to model 
distribution over all possible groundings

▸ Use Maximum a Posteriori (MAP) inference to find 
most likely grounding

▸ Use the likelihood of this ‘best’ grounding as a 
measure of agreement
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CRF Formulation

Using Bayes rule + since P(yo) and P(o) are constants 
for MAP inference:



CRF Formulation

1:

                      and                       are probabilities that box 
y_o has object o or attribute a.

1. Use R-CNN to train detectors for 266 object 
classes and 145 attribute types

2. Obtain SVM classification scores
3. Use Platt scaling to convert this to probabilities



CRF Formulation

2:

Train a Gaussian Mixture Model (GMM) to model:

                                            and 

(use the latter if <30 instances of (c, r, c’) ).

Use Platt scaling to convert GMM output to probabilities



Background: Gaussian Mixture Models

Model data points into a number of Gaussian distributions with unknown parameters

Fantastic overview: 
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html

Image (left): http://scikit-learn.org/stable/modules/mixture.html

Image (right): http://statweb.stanford.edu/~tibs/stat315a/LECTURES/em.pdf

https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html
http://scikit-learn.org/stable/modules/mixture.html
http://statweb.stanford.edu/~tibs/stat315a/LECTURES/em.pdf


Implementation

Training: Learn from a set of images with associated 
grounded scene graphs

Testing: given a scene graph + unannotated images,

1. For each image,
a. Generate candidate boxes using Geodesic 

Object Proposals (GOP)
b. Use CRF + MAP to identify best grounding 

and output probability of match
2. Return ranked list of images by probability



Background: Geodesic Object Proposals

Creates a probability map for boundaries, then places geodesic seeds. Uses those seeds 
to make maps, then uses a geodesic distance transform for final object proposals. 
Note: The paper found “[Selective Search (SS)] achieves the highest object recall on our dataset; however we use 
[Geodesic Object Proposals] GOP for all experiments as it provides the best trade-off between object recall (≈ 70% 
vs ≈ 80% for SS) and number of regions per image (632 vs 1720 for SS).

Original paper (+ above image): 
http://www.philkr.net/papers/2014-10-01-eccv/2014-10-01-eccv.pdf

http://www.philkr.net/papers/2014-10-01-eccv/2014-10-01-eccv.pdf


Evaluation

Models Used:
▸ SG-obj-attr-rel: Our model. 

Includes unary object and 
attribute potentials and 
binary relationship potentials. 

▸ SG-obj-attr: Our model, using 
only object and attribute 
potentials. 

▸ SG-obj: Our model, using only 
object potentials. Equivalent 
to R-CNN

▸ Rand: Random permutation
4

Metrics Used:
▸ Med r: Median rank for 

true image/highest true 
image

▸ R @ N:  Recall at rank N



Results

1: Full scene-graph queries

Pick an image from the test set. Query test set with 
its scene graph. Record rank of the true image.
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Results

2: Partial scene-graph queries

Mine dataset for recurring (>5x) scene subgraphs. 
For each subgraph, find all images that match it. 
Query test set and record highest-ranked TP image 



Results

3: Partial scene-graph queries

Evaluate median IoU across all objects in all test 
images and fraction of objects with IoUs above 
thresholds. Note: they’re quite low!



Results

Left: experiment 1. Top: experiment 3. Bottom: experiment 2.



Question: Scene graphs are clunky and complex, 
and won’t likely be used for real-world image 
retrieval. What do we do instead?

Generating Semantically Precise Scene Graphs 
from Textual Descriptions for Improved Image 
Retrieval (link)

By: Schuster et al., 2015

https://nlp.stanford.edu/pubs/schuster-krishna-chang-feifei-manning-vl15.pdf


Scene Graph Generation by Iterative Message 
Passing

By: Xu et al., 2017



Key Challenge: 
Generating Scene Graphs from Images

Problem: 

Create an end-to-end trainable model that, given 
an image, outputs a scene graph with object 
classes, bounding boxes, and relationships

Central Intuition: 

Use the surrounding context for reasoning; why 
not use object predictions to predict 
relationships (and vice versa)?

5

For the following slides: Images Credit: Xu et al.



Scene Graph Generation

Given an image I:

1. Use a Region Proposal Network 
to generate a set of proposed 
bounding boxes B_I 

2. Infer relevant labels:
a. For each bbox, an object class
b. For each bbox, offsets for refining position
c. For each pair, a relationship variable

(Part 2 is the central undertaking of this paper…) 6



Background: Region Proposal Network

Slides across the conv feature map of an image of any size, feeds features into a 
box-regression and box-classification layer, outputs set of object proposals

Above image: Berthy/Riley’s slides

From Faster-RCNN: https://arxiv.org/pdf/1506.01497.pdf

https://arxiv.org/pdf/1506.01497.pdf


Task Formalization

Notation: Q(x | . ) is the probability of x; depends only on the 
current states of all nodes + edges



(a): Each node, edge has a corresponding Gated Recurrent Unit (GRU)

Each of these units have hidden states hi (node) or hi -> j (edge)

Using ROI-Pooling, we extract visual features for each bbox - 
fi

v is the feature for bboxi, while fi
e is for the union of boxesi, j



(a): Then, the mean field distribution is initially just:



Background: Gated Recurrent Units

Above image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Original paper: https://arxiv.org/pdf/1406.1078.pdf

Comparison to LSTMs: https://arxiv.org/pdf/1412.3555v1.pdf

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1412.3555v1.pdf


Background: ROI-Pooling

ROI-Pooling: method to efficiently max-pool across inputs of different sizes

Above Image: Berthy/Riley’s Slides

Great overview: https://blog.deepsense.ai/region-of-interest-pooling-explained/

From Fast-RCNN: https://arxiv.org/pdf/1504.08083.pdf

https://blog.deepsense.ai/region-of-interest-pooling-explained/
https://arxiv.org/pdf/1504.08083.pdf


(b): (a) alone is sufficient as an RNN for graph inference. Now, we 
incorporate message passing for contextual understanding.

Bipartite graph: nodes and edges affect each other inter-class-wise

mi for ith node: hi, all outbound/inbound edges hi -> j and hj -> i

mi -> j for i -> jth edge: hi -> j, endpoint nodes hi and hj



(b): Each node and edge gets multiple messages. Xu et al. use a novel 
message pooling function to weight each message and fuse them:

                                                                                                              w, v are learnable params
                                                                                                              ᵫ is the sigmoid func.



(c): Repeat this process with multiple layers. Finally, similarly to faster 
R-CNN:
▸ Softmax layer for final object and relationship scores
▸ Fully-connected layer for bounding box offsets for each obj class

Former uses cross-entropy loss; latter uses l1 loss.



Implementation

Training: tune the fully connected layers and GRUs

Testing: Given an image I,

1. Use a Region Proposal Network to generate a set 
of proposed bounding boxes B_I 

2. Use a pretrained VGG-16 network to extract visual 
features

3. Non-Max Suppression to filter boxes down to 
object proposals

4. Predict outputs for all boxes, edges; create graph



Evaluation

Three tasks:

1. Predicate classification: predict predicates for all 
pairwise relationships

2. Scene graph classification: predict the predicate and 
associated object categories for all relationships

3. Scene graph generation: detect a set of objects (0.5 
IoU overlap), predict predicates between them

R@50/100: fraction of ground truth relationships in top x 
most confident predictions for an image (higher = better)

Dataset: Visual Genome, cleaned up (!) 7



Results

Findings: 

▸ Performance 
stagnates after 2 
iterations

▸ Novel pooling 
method very 
effective



Results

Findings: 

▸ Outperformed a 
model using only 
local info ([26])

▸ Novel pooling 
method very 
effective



Results



Results

From the NYU Depth v2 set: 

▸ Attempt to predict 
support relation type and 
struct class of each object

▸ State of the art results 
using only RGB images 
(not RGB-D!)



Question: What are some more novel approaches 
to scene graph creation from images (ie. who’s 
beaten Xu et al. 2017)?

Mapping Images to Scene Graphs with 
Permutation-Invariant Structured Prediction 
(link)

By: Herzig et al., 2018

Note: This paper was published less than two weeks ago; while it 
outperforms Xu et al., the methods are unverified by others

https://arxiv.org/pdf/1802.05451.pdf


Scene graphs are pretty broadly useful - they’ve been 
successfully used for: 

❖ Image Retrieval (we’ve seen this)
❖ 3D Scene Synthesis (brief mention in Johnson et al.)
❖ Visual Question Answering (coming up!)

We’ve now learned of methods to find images from scene 
graphs and scene graphs from images, and of a dense 
dataset that can be used to improve performance further.

Implications



/end


