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Motivations
Neural Module Networks

1. VQA Overview
2. Compositional 

Visual Intelligence



(I, Q) → A

Previous approaches:

1. Classifier on encoded Q + I

2. Semantic parsers → logical 

expressions

VQA Overview



● Classifier on Encoded Question + Image
■ Monolithic — difficult to understand/explain models

■ Limited visual reasoning — probably just memorizing statistics

■ Limited linguistic reasoning — bag-of-words, RNN can’t capture 

linguistic complexity

● Logical Expressions
■ Purely logical representations of world might ignore visual 

features and attentions

■ Semantic parsers not optimized for VQA

VQA: Problems with Previous Approaches



“Is this a truck?”

1. Classify
● Convolutional

“How many objects are to 
the left of the toaster?”

1. Find toaster
2. Look left
3. Find objects
4. Count
● Convolutional
● Recurrent

Each question requires different # of reasoning steps and different kinds 
of reasoning

Insight: Compositional Nature of VQA



Questions are composed of “reasoning modules” and might share 

substructures

Insight: Compositional Nature of VQA

Where is the dog? What color is the dog? Where is the cat?



Representational 
Approaches

Neural network structures are not 

universal, but at least modular in 

applications

Compositional 
Approaches

Logical expressions and functional 

programs provide computational 

structure

Proposed Approach

1. Predict computational structure from question 

2. Construct modular neural network from this structure

Insight: Combine Both Approaches



Neural 
Modules

Neural Module Networks

1. Neural Module 
Networks

2. Module Types



Neural Module Networks
Model = collection 

of modules + 

network layout 

predictor

Output = 

distribution over 

answers



Data Types:

1. Images

2. Attentions

3. Labels

Module Types:

● FIND

● TRANSFORM

● COMBINE

● DESCRIBE

● MEASURE

Modules



Convolve every position in input image w/ weight 

vector (distinct for each instance) to produce 

attention heatmap

find[dog] = matrix with high values in regions containing dogs

Image → Attention

Find Module



Fully connected mapping from one attention to 

another (MLP w/ ReLUs)

transform[not]: move attention away from active regions

Attention → Attention

Transform Module



Merge two attentions into one

combine[and]: activate regions active in both inputs

Attention x Attention → Attention

Combine Module



Average image features weighted by attention, then 

pass averaged feature vector through FC layer

describe[color] = representation of colors in the region attended to

Image x Attention → Label

Describe Module



Map attention to a distribution over labels

Can evaluate existence of detected object or count 

sets of objects

Attention → Label

Measure Module



Question 
Parsing

Neural Module Networks

1. Question Parsing
2. Question Tree
3. Question Encoding
4. Predicting an Answer
5. Note on Training



Question → dependency representation

Filter dependencies to those connected by wh-word or 

connecting verb

Question Parsing

“What is standing in the field?” what(stand)

“What color is the truck?” color(truck)

“Is there a circle next to a square?” is(circle, next-to(square))



leaves: find

internal nodes: transform, combine

root nodes: describe, measure

Question Tree



Full model = NMN + 

LSTM question encoder

● LSTM models attributes lost 

in parsing: “underlying 

syntactic, semantic  

regularities in the data”

● Single-layer LSTM w/ 1000 

hidden units

Question Encoding



1. Pass final hidden state of 

LSTM through FC layer

2. Add output elementwise to 

representation produced 

by root module of NMN

3. Apply ReLU, another FC 

layer, and get distribution 

over possible answers

Predicting an Answer



Modules jointly trained

Some weights updated more frequently than others

● Use adaptive per-weight learning rates (ADADELTA)

Training



Experiments
Neural Module Networks

1. Evaluation on SHAPES
2. Evaluation on VQA
3. Future Work



● Synthetic dataset

● Complex questions about simple arrangements of 

colored shapes

● To prevent mode-guessing, all answers yes/no

SHAPES Dataset



Is there a red shape above a circle?



Performance on SHAPES
# modules in 

neural module 
network



● Contains over 200,000 images from MS COCO

● Each image annotated with 3 questions and 10 answers/question

VQA Dataset



Visual input = conv5 layer of 

VGG-16 (after max-pooling)

1. VGG pre-trained on ImageNet 
classification

2. VGG fine-tuned on COCO for captioning

What color is his tie?



Does especially well on questions answered by object, attribute, or number

Results on VQA



Good Example



Good Examples (2 of 2)



Bad examples

Bad Example



Bad examples

Bad Examples (2 of 2)



Better parser

“Are these people most likely 

experiencing a work day?”

● Parser:     be(people, likely)
● Correct:  be(people, work)

Combine predicting 
network structures and 
learning network 
parameters

Future Work



Learning to Reason: End-to-End 
Neural Module Networks for 
Visual Question Answering

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate 
Saenko. ICCV, 2017.



End-to-End 
Module 

Networks
Learning to Reason

1. Motivations
2. Proposed Approach
3. Attentional Neural 

Modules



● Standard neural module networks rely on external 

parser

“Are these people most likely experiencing a work day?”

Parser:     be(people, likely)

● New datasets
■ CLEVR

Motivations



Predict modular network architectures directly from 

textual input

Proposed Approach

1) Set of co-attentive 

neural modules

2) Layout policy that 

predicts question-specific 

network layout



Neural module m := 

Each input tensor ai= image attention map over 

convolutional feature grid

Output tensor y = image attention map or probability 

distribution over answers

Attentional Neural Modules



Attentional Neural Modules



Attentional Neural Modules: 
Implementations



Architecture
Learning to Reason

1. Model Overview
2. Layout Policy



Model Overview



Model Overview



Input: Question

Output: Probability 

distribution over 

layouts, p ( l | q )

Layout Policy



1. Encode question
a. Embed every word i → vector wi  (using GloVe)

b. Multi-layer LSTM encodes input question → [h
1

, 

h
2

, …, h
T

], where there are T words in the question

2. Decoder LSTM

3. Predict next module at t

Layout Policy: Seq-to-Seq RNN (1 of 3)



1. Encode question →  hi’s: [h
1

, h
2

, …, h
T

]

2. Decoder LSTM
a. Same structure as encoder, but different params

b. At each time step t, predict attention weights ati of 

every input word using hi (encoder output) and ht 

(decoder output)

3. Predict next module at t

Layout Policy: Seq-to-Seq RNN (2 of 3)



1. Encode question → [h
1

, h
2

, …, h
T

]

2. Decoder LSTM → ati = attention at time t for word i
3. Predict next module at t

a. Context vector ct =                         (attention heatmap 

across question words at time t)

b. Probability for next module token (encoded form 

of a module) m(t) predicted from ht and ct

Layout Policy: Seq-to-Seq RNN (3 of 3)



● Each time step t corresponds to word in input 

question

● For each t, sample from distribution over all modules 

to get next module token from

 

● Probability of layout l is:

Layout Policy: Choosing a Layout



Previous: Textual features hard-coded into module 

instance

● describe[‘shape’] and describe[‘where’] different instantiations 

Idea: Pass attention-based textual input to each module in 

network

● “shape” and “where” would be input to general describe module

Layout Policy: Textual Input (1 of 3)



Construct textual 

input xtxt
(t) for each 

time step t, using ati 

from each word i

Layout Policy: Textual Input (2 of 3)

Simplified textual attention heat map:



Construct textual 

input xtxt
(t) for each 

time step t, using ati 

from each word i

Layout Policy: Textual Input (3 of 3)

textual attention heatmap



Reverse Polish 

notation lets us 

linearize 

functional 

programs

Linearized Layout



Model Overview (Revisited)



Training
Learning to Reason

1. Loss Function
2. Behavioral Cloning



Training loss 

function:

Softmax loss over output answer scores

Answer-Based Loss: Function



Loss function not fully differentiable since layout l is 

discrete

● Differentiable parts: backpropagation

● Non-differentiable parts: policy gradient method in 

reinforcement learning

Answer-Based Loss: Backpropagation



● Difficult to train — 3 sets of params to learn
■ Seq-to-seq RNN params

■ Textual attention weights

■ Neural module params

Behavioral Cloning (1 of 2)



● Pre-train by behavioral cloning from expert policy pe
■ Minimize KL-divergence between pe and p (our layout policy)

■ Simultaneously minimize question-answering loss using layout l 
obtained from pe

● After learning good initialization, further train model 

end-to-end using previous estimated gradient

Behavioral Cloning (2 of 2)



Experiments
Learning to Reason

1. Evaluation on SHAPES
2. Evaluation on CLEVR
3. Evaluation on VQA



Evaluation on SHAPES



SHAPES Example



Johnson et al., 2016

● 100k images + 850k questions

● Questions synthesized with functional programs

CLEVR Dataset



● Visual inputs
■ For each image, extract 15x10x512 tensor from pool5 output of 

VGG-16 trained on ImageNet classification

■ Add two extra x, y dimensions to each location on feature map 

→ 15x10x514 tensor

● Textual inputs
■ Each question word embedded to 300-dimensional vector

● Expert layout policy
■ Convert annotated functional programs in CLEVR into module 

layout

Testing on CLEVR



CLEVR Results



CLEVR Results



CLEVR Results



CLEVR Results



CLEVR Examples (1 of 2)



CLEVR Examples (2 of 2)



● Same input preparation as for CLEVR

● Expert layout policy same as in NMN paper (using 

external parser)

Testing on VQA



VQA Results



MCB



VQA Examples (1 of 2)



VQA Examples (2 of 2)



Summary
Neural Module Networks + 

Learning to Reason

1. Neural Module 
Networks
a. Compositional 

reasoning
b. Module toolbox
c. Question parsing for 

layout prediction
2. Learning to Reason

a. End-to-end module 
networks

b. Layout policy
c. Baseline for CLEVR



Extensions
Neural Module Networks + 

Learning to Reason

1. Compositional 
Reasoning for Other 
Vision Tasks

2. More Versions of 
Compositional VQA
a. “Inferring and 

executing programs 
for visual reasoning” 
(Johnson et al., 2017) 
https://arxiv.org/pdf/
1705.03633.pdf

https://arxiv.org/pdf/1705.03633.pdf
https://arxiv.org/pdf/1705.03633.pdf



