
Neural Module Networks
Berthy Feng

Outline
Presentation Overview

1. Neural Module

Networks

2. Learning to Reason:

End-to-End Neural

Module Networks

Neural Module Networks
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. CVPR,

2016.

Motivations
Neural Module Networks

1. VQA Overview
2. Compositional

Visual Intelligence

(I, Q) → A

Previous approaches:

1. Classifier on encoded Q + I

2. Semantic parsers → logical

expressions

VQA Overview

● Classifier on Encoded Question + Image
■ Monolithic — difficult to understand/explain models

■ Limited visual reasoning — probably just memorizing statistics

■ Limited linguistic reasoning — bag-of-words, RNN can’t capture

linguistic complexity

● Logical Expressions
■ Purely logical representations of world might ignore visual

features and attentions

■ Semantic parsers not optimized for VQA

VQA: Problems with Previous Approaches

“Is this a truck?”

1. Classify
● Convolutional

“How many objects are to
the left of the toaster?”

1. Find toaster
2. Look left
3. Find objects
4. Count
● Convolutional
● Recurrent

Each question requires different # of reasoning steps and different kinds
of reasoning

Insight: Compositional Nature of VQA

Questions are composed of “reasoning modules” and might share

substructures

Insight: Compositional Nature of VQA

Where is the dog? What color is the dog? Where is the cat?

Representational
Approaches

Neural network structures are not

universal, but at least modular in

applications

Compositional
Approaches

Logical expressions and functional

programs provide computational

structure

Proposed Approach

1. Predict computational structure from question

2. Construct modular neural network from this structure

Insight: Combine Both Approaches

Neural
Modules

Neural Module Networks

1. Neural Module
Networks

2. Module Types

Neural Module Networks
Model = collection

of modules +

network layout

predictor

Output =

distribution over

answers

Data Types:

1. Images

2. Attentions

3. Labels

Module Types:

● FIND

● TRANSFORM

● COMBINE

● DESCRIBE

● MEASURE

Modules

Convolve every position in input image w/ weight

vector (distinct for each instance) to produce

attention heatmap

find[dog] = matrix with high values in regions containing dogs

Image → Attention

Find Module

Fully connected mapping from one attention to

another (MLP w/ ReLUs)

transform[not]: move attention away from active regions

Attention → Attention

Transform Module

Merge two attentions into one

combine[and]: activate regions active in both inputs

Attention x Attention → Attention

Combine Module

Average image features weighted by attention, then

pass averaged feature vector through FC layer

describe[color] = representation of colors in the region attended to

Image x Attention → Label

Describe Module

Map attention to a distribution over labels

Can evaluate existence of detected object or count

sets of objects

Attention → Label

Measure Module

Question
Parsing

Neural Module Networks

1. Question Parsing
2. Question Tree
3. Question Encoding
4. Predicting an Answer
5. Note on Training

Question → dependency representation

Filter dependencies to those connected by wh-word or

connecting verb

Question Parsing

“What is standing in the field?” what(stand)

“What color is the truck?” color(truck)

“Is there a circle next to a square?” is(circle, next-to(square))

leaves: find

internal nodes: transform, combine

root nodes: describe, measure

Question Tree

Full model = NMN +

LSTM question encoder

● LSTM models attributes lost

in parsing: “underlying

syntactic, semantic

regularities in the data”

● Single-layer LSTM w/ 1000

hidden units

Question Encoding

1. Pass final hidden state of

LSTM through FC layer

2. Add output elementwise to

representation produced

by root module of NMN

3. Apply ReLU, another FC

layer, and get distribution

over possible answers

Predicting an Answer

Modules jointly trained

Some weights updated more frequently than others

● Use adaptive per-weight learning rates (ADADELTA)

Training

Experiments
Neural Module Networks

1. Evaluation on SHAPES
2. Evaluation on VQA
3. Future Work

● Synthetic dataset

● Complex questions about simple arrangements of

colored shapes

● To prevent mode-guessing, all answers yes/no

SHAPES Dataset

Is there a red shape above a circle?

Performance on SHAPES
modules in

neural module
network

● Contains over 200,000 images from MS COCO

● Each image annotated with 3 questions and 10 answers/question

VQA Dataset

Visual input = conv5 layer of

VGG-16 (after max-pooling)

1. VGG pre-trained on ImageNet
classification

2. VGG fine-tuned on COCO for captioning

What color is his tie?

Does especially well on questions answered by object, attribute, or number

Results on VQA

Good Example

Good Examples (2 of 2)

Bad examples

Bad Example

Bad examples

Bad Examples (2 of 2)

Better parser

“Are these people most likely

experiencing a work day?”

● Parser: be(people, likely)
● Correct: be(people, work)

Combine predicting
network structures and
learning network
parameters

Future Work

Learning to Reason: End-to-End
Neural Module Networks for
Visual Question Answering

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate
Saenko. ICCV, 2017.

End-to-End
Module

Networks
Learning to Reason

1. Motivations
2. Proposed Approach
3. Attentional Neural

Modules

● Standard neural module networks rely on external

parser

“Are these people most likely experiencing a work day?”

Parser: be(people, likely)

● New datasets
■ CLEVR

Motivations

Predict modular network architectures directly from

textual input

Proposed Approach

1) Set of co-attentive

neural modules

2) Layout policy that

predicts question-specific

network layout

Neural module m :=

Each input tensor ai= image attention map over

convolutional feature grid

Output tensor y = image attention map or probability

distribution over answers

Attentional Neural Modules

Attentional Neural Modules

Attentional Neural Modules:
Implementations

Architecture
Learning to Reason

1. Model Overview
2. Layout Policy

Model Overview

Model Overview

Input: Question

Output: Probability

distribution over

layouts, p (l | q)

Layout Policy

1. Encode question
a. Embed every word i → vector wi (using GloVe)

b. Multi-layer LSTM encodes input question → [h
1

,

h
2

, …, h
T

], where there are T words in the question

2. Decoder LSTM

3. Predict next module at t

Layout Policy: Seq-to-Seq RNN (1 of 3)

1. Encode question → hi’s: [h
1

, h
2

, …, h
T

]

2. Decoder LSTM
a. Same structure as encoder, but different params

b. At each time step t, predict attention weights ati of

every input word using hi (encoder output) and ht

(decoder output)

3. Predict next module at t

Layout Policy: Seq-to-Seq RNN (2 of 3)

1. Encode question → [h
1

, h
2

, …, h
T

]

2. Decoder LSTM → ati = attention at time t for word i
3. Predict next module at t

a. Context vector ct = (attention heatmap

across question words at time t)

b. Probability for next module token (encoded form

of a module) m(t) predicted from ht and ct

Layout Policy: Seq-to-Seq RNN (3 of 3)

● Each time step t corresponds to word in input

question

● For each t, sample from distribution over all modules

to get next module token from

● Probability of layout l is:

Layout Policy: Choosing a Layout

Previous: Textual features hard-coded into module

instance

● describe[‘shape’] and describe[‘where’] different instantiations

Idea: Pass attention-based textual input to each module in

network

● “shape” and “where” would be input to general describe module

Layout Policy: Textual Input (1 of 3)

Construct textual

input xtxt
(t) for each

time step t, using ati

from each word i

Layout Policy: Textual Input (2 of 3)

Simplified textual attention heat map:

Construct textual

input xtxt
(t) for each

time step t, using ati

from each word i

Layout Policy: Textual Input (3 of 3)

textual attention heatmap

Reverse Polish

notation lets us

linearize

functional

programs

Linearized Layout

Model Overview (Revisited)

Training
Learning to Reason

1. Loss Function
2. Behavioral Cloning

Training loss

function:

Softmax loss over output answer scores

Answer-Based Loss: Function

Loss function not fully differentiable since layout l is

discrete

● Differentiable parts: backpropagation

● Non-differentiable parts: policy gradient method in

reinforcement learning

Answer-Based Loss: Backpropagation

● Difficult to train — 3 sets of params to learn
■ Seq-to-seq RNN params

■ Textual attention weights

■ Neural module params

Behavioral Cloning (1 of 2)

● Pre-train by behavioral cloning from expert policy pe
■ Minimize KL-divergence between pe and p (our layout policy)

■ Simultaneously minimize question-answering loss using layout l
obtained from pe

● After learning good initialization, further train model

end-to-end using previous estimated gradient

Behavioral Cloning (2 of 2)

Experiments
Learning to Reason

1. Evaluation on SHAPES
2. Evaluation on CLEVR
3. Evaluation on VQA

Evaluation on SHAPES

SHAPES Example

Johnson et al., 2016

● 100k images + 850k questions

● Questions synthesized with functional programs

CLEVR Dataset

● Visual inputs
■ For each image, extract 15x10x512 tensor from pool5 output of

VGG-16 trained on ImageNet classification

■ Add two extra x, y dimensions to each location on feature map

→ 15x10x514 tensor

● Textual inputs
■ Each question word embedded to 300-dimensional vector

● Expert layout policy
■ Convert annotated functional programs in CLEVR into module

layout

Testing on CLEVR

CLEVR Results

CLEVR Results

CLEVR Results

CLEVR Results

CLEVR Examples (1 of 2)

CLEVR Examples (2 of 2)

● Same input preparation as for CLEVR

● Expert layout policy same as in NMN paper (using

external parser)

Testing on VQA

VQA Results

MCB

VQA Examples (1 of 2)

VQA Examples (2 of 2)

Summary
Neural Module Networks +

Learning to Reason

1. Neural Module
Networks
a. Compositional

reasoning
b. Module toolbox
c. Question parsing for

layout prediction
2. Learning to Reason

a. End-to-end module
networks

b. Layout policy
c. Baseline for CLEVR

Extensions
Neural Module Networks +

Learning to Reason

1. Compositional
Reasoning for Other
Vision Tasks

2. More Versions of
Compositional VQA
a. “Inferring and

executing programs
for visual reasoning”
(Johnson et al., 2017)
https://arxiv.org/pdf/
1705.03633.pdf

https://arxiv.org/pdf/1705.03633.pdf
https://arxiv.org/pdf/1705.03633.pdf

