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Instance Segmentation Task

e Label eachforeground pixel with object
and instance
e Object detection + semantic

segmentation ‘ ' ‘

Instance Segmentation

Slide Credit: Kaiming He



In This Lecture...

e Microsoft COCO dataset
e Mask R-CNN (fully supervised)
e MaskX R-CNN (partially supervised)



Microsoft COCO:
Common Objects in Context

Tsung-Yi Lin, Michael Maire, Serge Belongie, et al.
“Microsoft COCO: Common Objects in Context.” arXiv,
2015.



Previous Datasets

ImageNet: many object
categories

PASCAL VOC.: object
detection in natural images,
small number of classes

SUN: labeling scene types and
commonly occurring objects,
but not many instances per
category

person, sheep, dog %

(a) Image classification (b) Object localization

(c) Semantic segmentation (d) This work

Image Credit: Tsung-Yi Lin et al.



Goal: Push research in scene understanding

1. Detecting non-iconic views
2. Contextual reasoning between objects
3. Precise 2D localization of objects



MS COCO Dataset
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Image Collection & Annotation
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Non-lconic Image Collection

(a) Iconic object images (b) lconic scene images (c) Non-iconic images

Image Credit: Tsung-Yi Lin et al.



Annotation
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(a) Category labeling (b) Instance spotting (c) Instance segmentation

Fig. 3: Our annotation pipeline is split into 3 primary tasks: (a) labeling the categories present in the image (§4.1),
(b) locating and marking all instances of the labeled categories (§4.2), and (c) segmenting each object instance (§4.3).

Image Credit: Tsung-Yi Lin et al.



Dataset Evaluation
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Categories per image

Instances per image

60%
80%
: @ COCO (7.7)
70% 8 COCO (3.5) 30%
” w9 PASCAL VOC (2.3)
» 60% e PASCAL VOC (1.4) )
) g 40% —8— mageNet (3.0)
£ 50% —8—ImageNet (1.7) o
b 5 8= SUN (17.0)
o 40% —8—SUN (9.8) s 30%
0 ]
T 30% g
o O 20%
E (]
o 20% e
) 10%
10%
0% 0%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of categories Number of instances

Image Credit: Tsung-Yi Lin et al.



Statistics

Number of categories vs. number of instances
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COCO Detection Challenge

The COCO 2017 Detection Challenge is designed to push the state of the art in object detection forward. Teams are
encouraged to compete in either (or both) of two object detection challenges: using bounding box output or object
segmentation output. For full details of this task please see the COCO Detection Challenge page.

Image Credit: Tsung-Yi Lin et al.



COCO Keypoint Challenge

The COCO 2017 Keypoint Challenge requires localization of person keypoints in challenging, uncontrolled conditions.
The keypoint challenge involves simultaneously detecting people and localizing their keypoints (person locations are not
given at test time). For full details of this task please see the COCO Keypoints Challenge page.

Image Credit: Tsung-Yi Lin et al.



COCO Stuff Challenge

The COCO 2017 Stuff Segmentation Challenge is designed to push the state of the art in semantic segmentation of stuff
classes. Whereas the COCO 2017 Detection Challenge addresses thing classes (person, car, elephant), this challenge
focuses on stuff classes (grass, wall, sky). For full details of this task please see the COCO Stuff Challenge page.

Image Credit: Tsung-Yi Lin et al.



COCO Places Challenges

Scene Parsing Instance Segmentation ~ Semantic Boundary Detection

Image Credit: Tsung-Yi Lin et al.



Mask R-CNN

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross
Girshick. “Mask R-CNN.” ICCV, 2017.



Faster R-CNN



Fast R-CNN
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Insight: Region Proposal and Detection Use

Same Features

Image Credit: Shaoqing Ren et al.
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Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
“attention” of this unified network.



Faster R-CNN = RPN * Fast R-CNN

RPN = Fully Convolutional Network
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Extending to Instance
Segmentation



Visual Perception Problems

Object Detection Semantic Segmentation Instance Segmentation
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Instance Segmentation Methods
R-CNN driven § FCN driven

Slide Credit: Kaiming He



Insight: Mask Prediction in Parallel
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Slide Credit: Kaiming He
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RolPool

input region proposal pooling sections
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RolPool

* RolPool breaks pixel-to-pixel translation-equivariance Q
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RolAlign
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Mask R-CNN
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Mask R-CNN Results



Examples

e Mask AP =
35.7

Image Credit: Kaiming He et al.

113

Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).




Comparisons

backbone AP APso AP75 | APs APpy AP
MNC [10] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
ECIS [26] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 74 313 50.0
FCIS+++ [26] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 S51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 394 16.9 39.9 53.5

Image Credit: Kaiming He et al.




Comparisons
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Figure 6. FCIS+++ [26] (top) vs. Mask R-CNN (bottom, ResNet-101-FPN). FCIS exhibits systematic artifacts on overlapping objects.

Image Credit: Kaiming He et al.



Application: Human Pose Estimation
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R-CNN (ResNet-50-FPN), with| person segmentation masks predicted
from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

Image Credit: Kaiming He et al.



Mask R-CNN Recap

e Add parallel mask prediction head to Faster-RCNN
e RolAlign allows for precise localization

Mask R-CNN improves on AP of previous state-of-the-art, can be
applied in human pose estimation



Learning to Segment Every Thing

Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, and
Ross Girshick. “Learning to Segment Every Thing.” arXiv,
2017.



Partially Supervised Model



Motivation for a Partially Superwsed Model

A = set of object
categories with
complete mask
annotations

B = set of object
categories with only
bounding boxes (no
segmentation
annotations)

How can we know C=AUDB?

Image Credit: Ronghang Hu et al.
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Transfer Learning
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Image Credit: Ronghang Hu et al.
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Weight Transfer Function
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Image Credit: Ronghang Hu et al.



Training

e Train bounding box head using standard box detection losses on all
classesinAUB
e Train mask head, weight transfer function using mask loss on classes in A

box bax box box labels in

ight S
features WEie predictions AUB
Wet
AUB

learned weights
AUB predicted weights
k
RPN & mask wr:;iashts mask mask labels in
RolAlign & predictions A 2

features

Mask R-CNN weight transfer function A: classes with box & mask data

ConvNet :
[stinded region) Wseg = T (Waer ; 6) B: classes with only box data

Wseg

class-agnostic mask MLP

Image Credit: Ronghang Hu et al.



Stage-Wise Training

1. Detection training e Traindetection once and then
2. Segmentation training fine-tune weight transfer function
e Inferior performance
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End-to-End Joint Training

e Jointly train detection head and mask head end-to-end
e Want detection weights to stay constant between A and B
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End-to-End Training Better

stop grad | voc — non-voc non-voc — voc
method training onwge |APon B APon A|APon B APon A
class-agnostic  sw n/a 14.2 34.4 21.5 30.7
transfer SW n/a 20.2 352 26.0 al.2
class-agnostic  e2e n/a 19.2 36.8 23.9 325
transfer e2e 20.2 S 24.8 332
transfer ee v 222 37.6 27.6 33.1

(d) Ablation on the training strategy. We try both stage-wise (‘sw’) and end-
to-end (‘e2e’) training (see §3.2), and whether to stop gradient from 7 to wget.
End-to-end training improves the results and it is crucial to stop gradient on wget.

Image Credit: Ronghang Hu et al.



Mask Prediction

Baseline: Class-agonistic FCN mask prediction

Extension: FCN+MLP mask head:

weight transfer function
Wseg = T(Wget 5 0)

mask
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Image Credit: Ronghang Hu et al.
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(c) Impact of the MLP mask branch. Adding the class-agnostic MLP
mask branch (see §3.4) improves the performance of classes in set B
for both the class-agnostic baseline and our weight transfer approach.



Results
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Figure 4. Mask predictions from the class-agnostic baseline (top row) vs. our Mask® R-CNN approach (bottom row). Green boxes
are classes in set A while the red boxes are classes in set B. The left 2 columns are A = {voc} and the right 2 columns are A = {non-voc}.

Image Credit: Ronghang Hu et al.



Comparisons

voc — non-voc: test on B = {non-voc} non-voc — voc: teston B = {voc}
backbone method AP APs9 AP7s APg APnr APy, AP APsg AP7s APg AP APy,
class-agnostic (baseline) | 19.2 36.4 18.4 11.5 23.3 24.4 23.9 429 235 11.6 24.3 33.7
R-50-FPN  MaskX R-CNN (ours) 23.7 43.1 23.5 12.4 27.6 329 28.9 52.2 28.6 12.1 29.0 40.6
fully supervised (oracle) | 33.0 53.7 35.0 15:1 37.0 49.9 37.5 63.1 38.9 15.1 36.0 53.1
class-agnostic (baseline) | 18.5 34.8 18.1 103 23.4 204 24.7 435 24.9 11.4 25.7 35.1
R-101-FPN Mask* R-CNN (ours) 23.8 42.9 23.5 12.7 28.1 335 29.5 52.4 29.7 13.4 30.2 41.0
fully supervised (oracle) | 34.4 552 36.3 15:5 39.0 52.6 30.1 64.5 41.4 16.3 38.1 55.1

Table 2. End-to-end training of Mask® R-CNN. As in Table 1, we use ‘cls+box, 2-layer, LeakyReLLU” implementation of 7 and add the
MLP mask branch (‘transfer+MLP’), and follow the same evaluation protocol. We also report APso and AP7s (average precision evaluated
at 0.5 and 0.75 IoU threshold respectively), and AP over small (APg), medium (APxs), and large (APr,) objects. Our method significantly
outperforms the baseline on those classes in set B without mask training data for both ResNet-50-FPN and ResNet-101-FPN backbones.

Image Credit: Ronghang Hu et al.



Segmenting Everything

Figure 5. Example mask predictions from our Mask”™ R-CNN on 3000 classes in Visual Genome. The srccin boxes are the 80 classes
that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without
mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

Image Credit: Ronghang Hu et al.



