Classic Video Datasets and Algorithms

Qasim Nadeem, Divya Thuremella

Overview

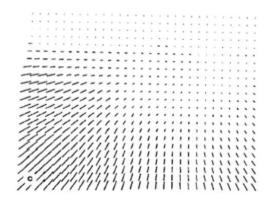
- Background
- Action Recognition Dense Trajectories Paper
 - Main Idea
 - Ways to Track
 - Dense Trajectories
 - Descriptors
- Datasets
 - KTH
 - UCF 101
 - Hollywood-2
 - HMDB
- Evaluation

Background: Optical Flow (and Lukas Kanade Tracking)

Optical Flow

• 2D vector field describing apparent motion in

images



u(x, y) Horizontal component v(x, y) Vertical component

Lucas Kanade Object Tracker

- Key assumptions:
 - Brightness constancy: projection of the same point looks the same in every frame (uses SSD as metric)
 - Small motion: points do not move very far (from guessed location)
 - Spatial coherence: points move in some coherent way (according to some parametric motion model)
 - For this example, assume whole object just translates in (u,v)

Lukas Kanade Object Tracker

$$I(x,y,t)$$

$$(x,y)$$

$$(u,v)$$

$$(x,y,t+1)$$

$$(x,y,t+1)$$

Brightness Constancy Equation:

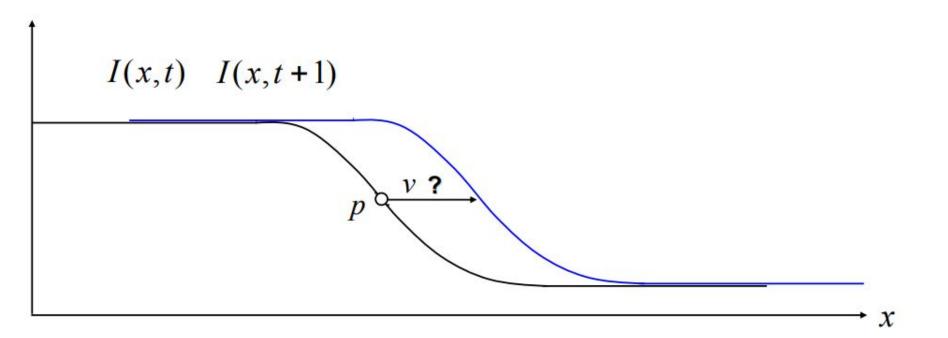
$$I(x,y,t) = I(x+u,y+v,t+1)$$

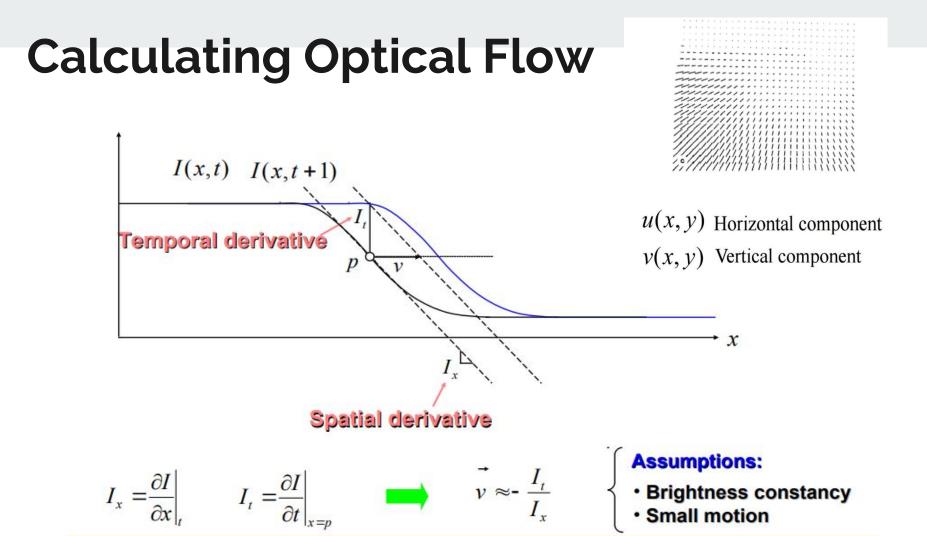
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right
side:Difference over frames

$$I(x + u, y + v, t + 1) \approx I(x, y, t) + I_x \cdot u + I_y \cdot v + I_t$$
$$I(x + u, y + v, t + 1) - I(x, y, t) = + I_x \cdot u + I_y \cdot v + I_t$$

Hence,

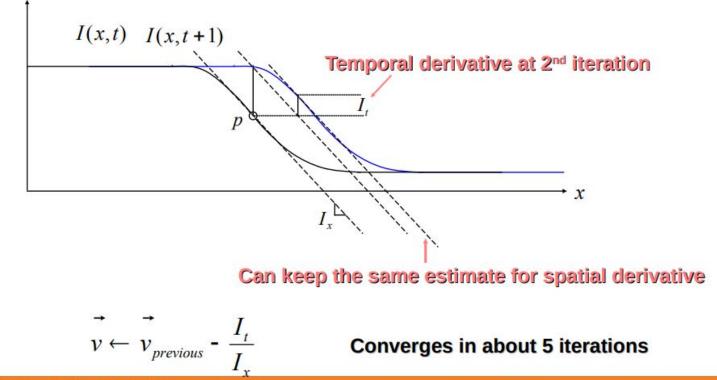
 $I_x \cdot u + I_y \cdot v + I_t \approx 0 \quad \Rightarrow \nabla I \cdot [u \ v]^T + I_t = 0$





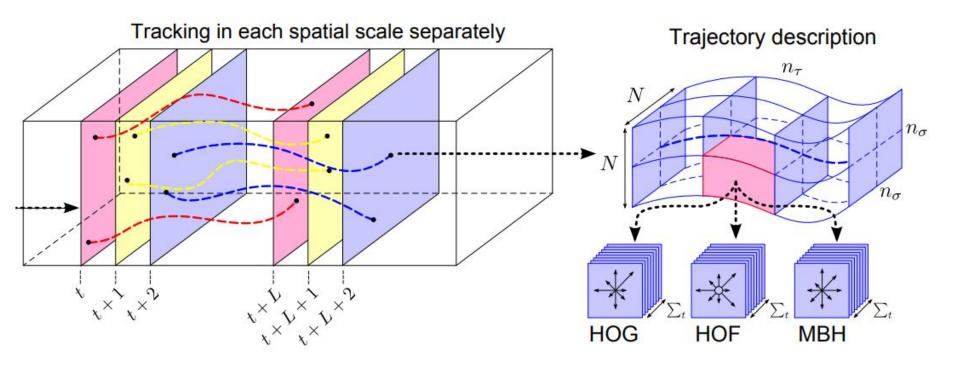
Lukas Kanade: Find New Position from Optical Flow

Iterating helps refining the velocity vector



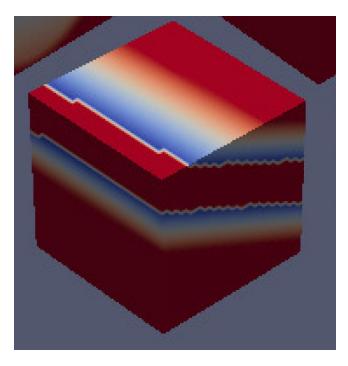
Paper: Action Recognition by Dense Trajectories

Main Idea: Videos as Trajectories



Main Idea: Videos as Trajectories

time

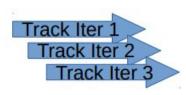


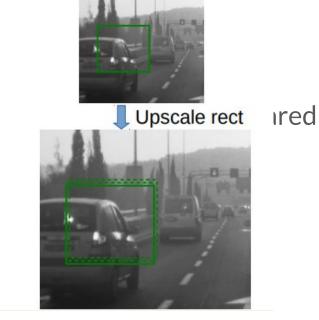
- 1) Lukas Kanade Tracker
 - a) Baseline
- 2) Find SIFT features and match between frames
 - a) Too expensive
- 3) Dense Trajectories (proposed method)

1)

2)

3)





- 1) Lukas Kanade Tracker
 - a) Baseline
- 2) Find SIFT features and match between frames
 - a) Too expensive
- 3) Dense Trajectories (proposed method)

- 1) Lukas Kanade Tracker
 - a) Baseline
- 2) Find SIFT features and match between framesa) Too expensive
 - 3) Dense Trajectories (proposed method)

 Lukas ł
 a) Ba: to i
 Find SI
 a) To
 3) Dens

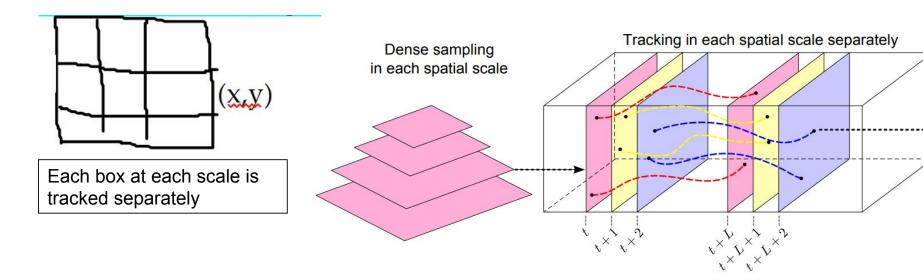
s being compared

ame sures fetBeat Method

- Image \rightarrow WxW grid, tracked in each scale
- If not connected to prev track, start a new one
- update each point in box with median of all points in that box

- Image \rightarrow WxW grid, tracked in each scale
- If not connected to prev track, start a new one
- update each point in box with median of all points in that box

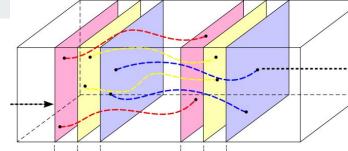
• Image \rightarrow WxW grid, tracked in each scale



- Image \rightarrow WxW grid, tracked in each scale
- If not connected to prev track, start a new one
- update each point in box with median of all points in that box

Tracking in each spatial scale separately

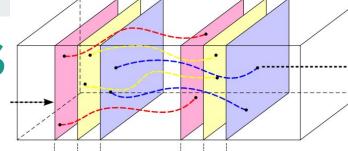
- if not connected to a prev track, start a new one
- when something moves
 - the track it moves to ends
 - the track it moves from replaces it
 - new track starts where it moves from



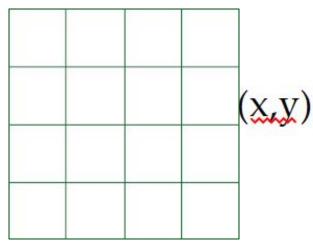
Tracking in each spatial scale separately

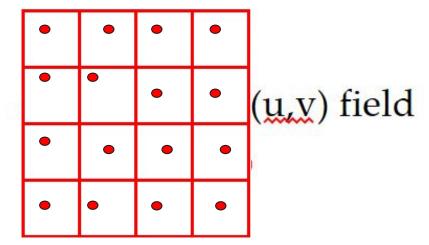
Dense Trajectories

- if not connected to a prev track, start a new one
 - the length of a trajectory is limited to L frames
 - when trajectory > L
 (length), it's removed
 - because trajectories drift



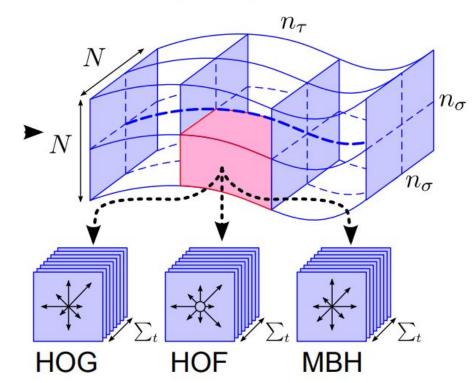
• update each point in box with median of all optical flow (u,v) vectors of that box





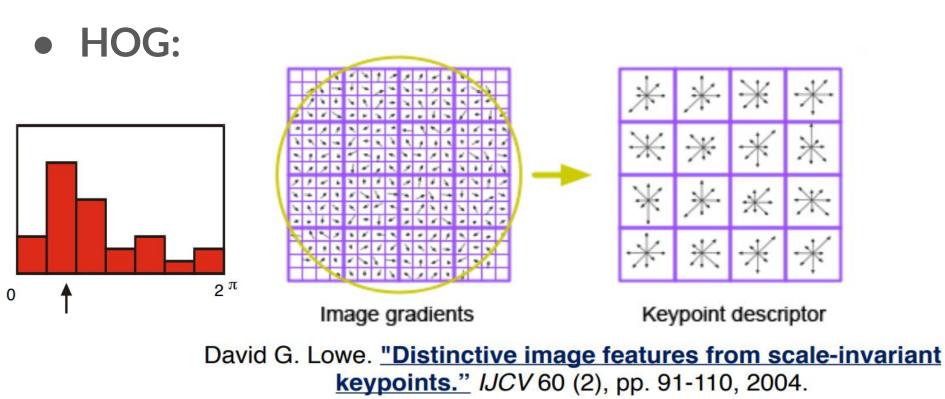
Trajectories \rightarrow **Descriptors**

Trajectory description



- Trajectory $S' = \frac{(\Delta P_t, \dots, \Delta P_{t+L-1})}{\sum_{j=t}^{t+L-1} ||\Delta P_j||}$
 - Displacement vector ΔP_t ,
- HOG
- HOF
- MBH

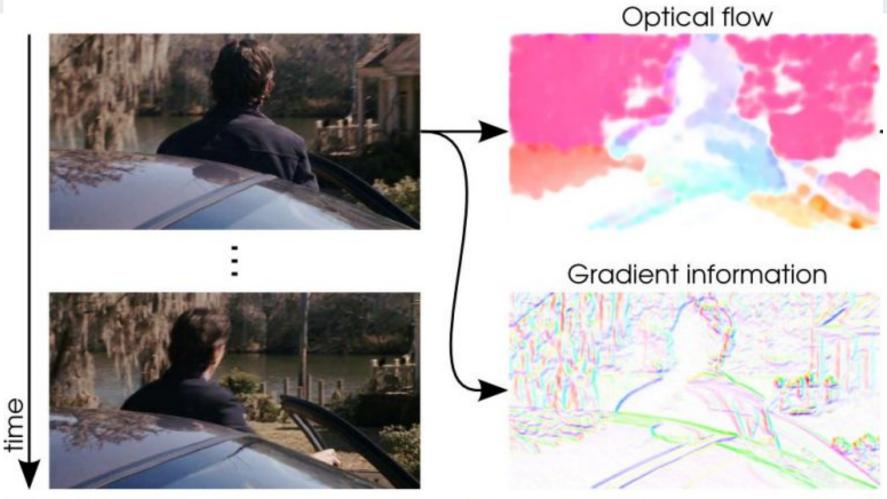
- HOG
 - Apply x and y derivative filters \rightarrow (Ix, Iy) \rightarrow (magnitude, direction) \rightarrow histogram them over NxN pixels
- HOF
- MBH



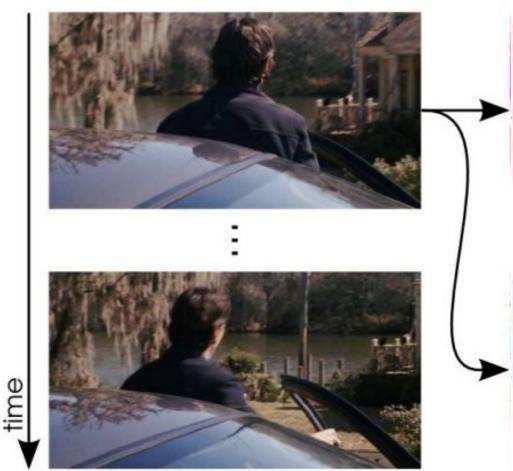
- HOG
- HOF

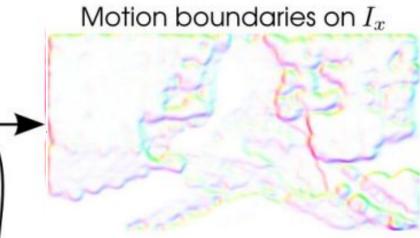
 Same as HOG but instead of (Ix, Iy), use optical flow (u, v) = (It/Ix, It/Iy) → (mag, dir) → histogram over NxN pixels

• MBH



- HOG
- HOF
- MBH
 - Same as HOF but histogram is weighted by the magnitude and expressed as (Ix, Iy)





Motion boundaries on I_y

Specifics of Experimental Setup

- Sampling step size of W = 5 is dense enough to give good results
- Used 8 spatial scales spaced by $1/\sqrt{2}$
- Experimentally, trajectory length L = 15 frames
- Voxel is $n\sigma \times n\sigma \times n\tau$ where $n\sigma = 2$, $n\tau = 3$

Specifics of Evaluation Setup

- take 100,000 random samples of hog descriptors from all the training videos
- k-means cluster them into 4,000 words
- map any new descriptor to those words
- Classify using a non-linear SVM with a chi-squared kernel

4 Important Datasets

- KTH Human Actions (2004)
- Hollywood-2 (2009)
- HMDB-51: Human Motion DataBase (2011)
- UCF 101 (2012)

KTH Human Actions (2004)

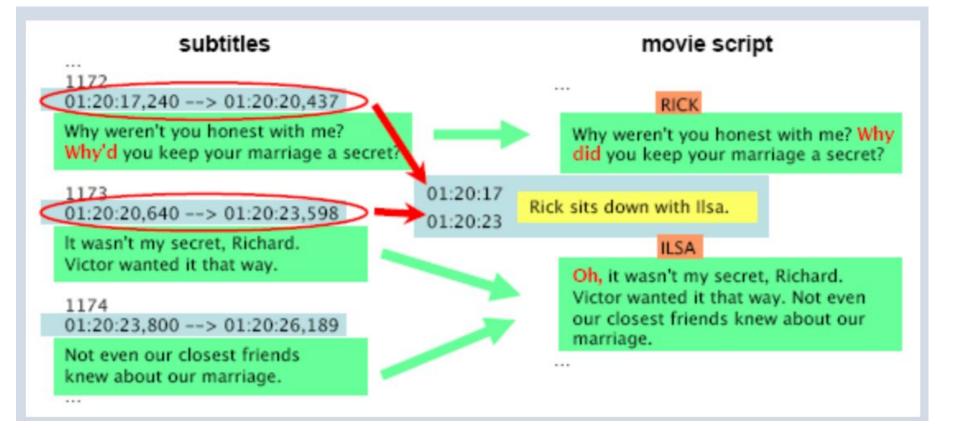
- 'Simple'/'Controlled' clips intentionally captured
- Total **2391** clips
- **25** FPS; Avg length of **4** sec (~100 frame clips)
- **160x120** spatial resolution
- Homogeneous background
- Static camera

KTH Human Actions (2004)

- 6 action classes; 4 scenarios; 25 actors;
- Homogeneous background; static camera

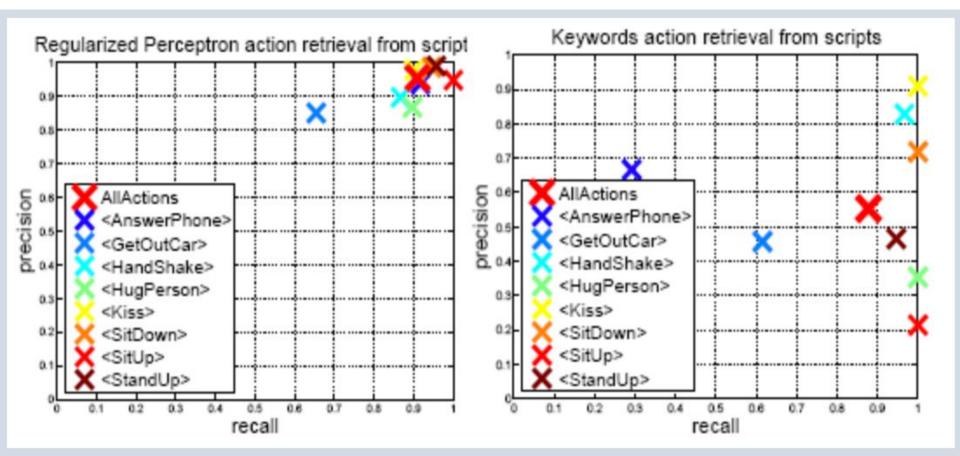
- 12 action classes; 10 scene classes; total 3669 clips
- ~20.1 hours of video in total
- Clips from **69 Hollywood Movies** (**different movies** for test & train)
- Automatic action annotation (!)
- Manual verification afterwards to clean-up

- Scripts describe with scenes, characters, transcribed dialogs and human action (free online websites..)
- **Subtitles** have **time** information but only precise speech
- Align speech sections between subtitles and scripts
 Transfer time information to scene descriptions in scripts



A "Text" Action Classifier

- Train a **Regularized Perceptron text** classifier for each action class
- Assign action labels to scene descriptions
- Does much better than hand-tuned regular-expression matching



- Sample video clips can contain multiple actions (probably true of other datasets too)
- Also gave conditional probability estimates: **p(scene|action)** and **p(action|scene)** using the movie scripts for **clips not cleaned**

Actions				Scenes		
	Training subset (clean)	Training subset (automatic)	Test subset (clean)	Training Test subset subset (automatic) (clean)		
AnswerPhone	66	59	64	EXT-House 81 140		
DriveCar	85	90	102	EXT-Road 81 114		
Eat	40	44	33	INT-Bedroom 67 69		
FightPerson	54	33	70	INT-Car 44 68		
GetOutCar	51	40	57	INT-Hotel 59 37		
HandShake	32	38	45	INT-Kitchen 38 24		
HugPerson	64	27	66	INT-LivingRoom 30 51		
Kiss	114	125	103	INT-Office 114 110		
Run	135	187	141	INT-Restaurant 44 36		
SitDown	104	87	108	INT-Shop 47 28		
SitUp	24	26	37	All Samples 570 582		
StandUp	132	133	146			
All Samples	823	810	884			

HMDB (2011)

- **7000** manually annotated clips from **YouTube** & **Movies**
- **51** action classes (>= **100** clips each)
- **90+%** accuracy on existing popular datasets (KTH, Weizmann etc)
- Interesting experiment to show that **HMDB's** action categories mainly differ in **motion** rather than **static poses**
- Contrary to **UCF-50** & **Hollywood2**: "solvable" with static information alone

- Shown on Left:

 i) Hand-waving
 ii) Drinking
 iii) Sword Fighting
 iv) Diving
 v) Running
 vi) Kicking
- Large variation in camera viewpoint/motion, cluttered background, position/scale/appear ance of actors

UCF 101 (2012)

- "Realistic" action videos taken from YouTube
- Extension of earlier **UCF-50**
- Examples: ...Apply Eye Makeup, Archery, Baby Crawling, Blowing Candles, Body Weight Squats, Boxing Punching Bag, Hammering, Handstand Push-ups, Handstand Walking, Walking with a dog, Wall Push-ups...
- ~Twice as big as UCF-50, HMDB-51
- Authors' claim: "Most challenging data set to date";
 Largest diversity in actions, variations in camera motion, object appearance/pose/scale/viewpoint, cluttered background, illumination conditions..
- Authors' Baseline result (w/ standard BOW approach): 43.90%

UCF 101 (2012)

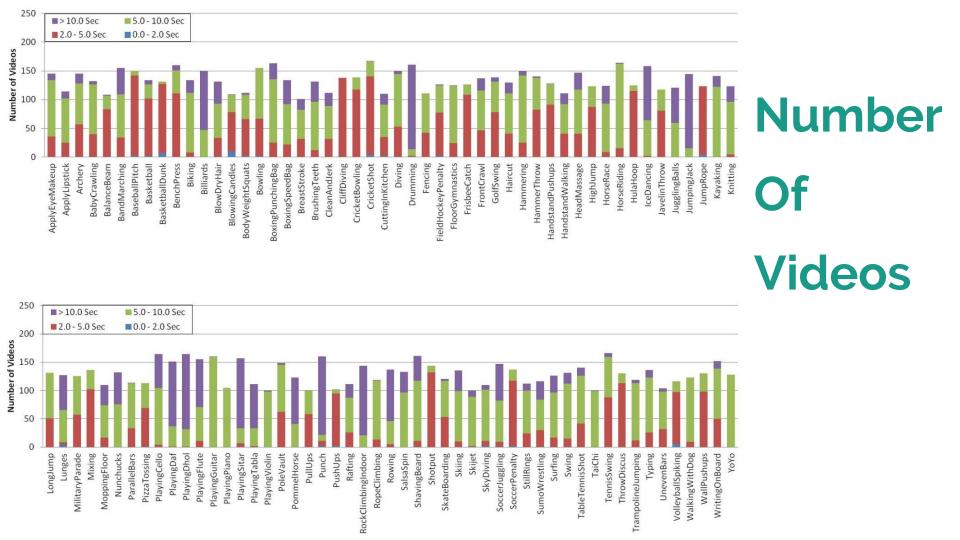
Actions	101		
Clips	13320		
Groups per Action	25		
Clips per Group	4-7		
Mean Clip Length	7.21 sec		
Total Duration	1600 mins		
Min Clip Length	1.06 sec		
Max Clip Length	71.04 sec		
Frame Rate	25 fps		
Resolution	320×240		
Audio	Yes (51 actions)		

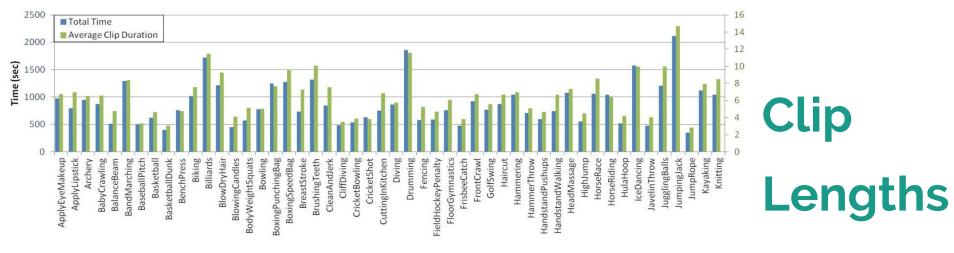
• **5** broad **categories** of actions (**101**):

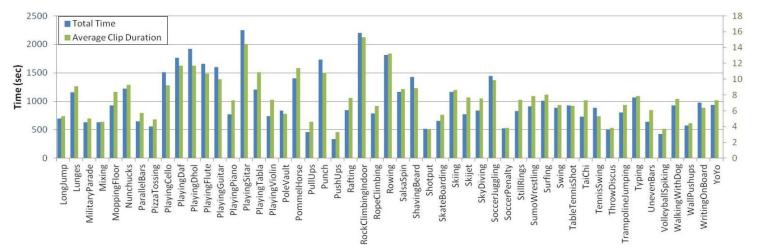
i) Human-Object Interaction ii) Body-Motion Only iii) Human- Human Interaction iv) Playing Musical Instruments v) Sports

• **25 Groups (4-7 videos):** clips with commonalities (similar background, viewpoint etc)

 Table 1. Summary of Characteristics of UCF101







Evaluation

Action Recognition by Dense Trajectories by Wang, Klaser, Schmid, Cheng-Lin CVPR'11

Results on four Datasets

	KTH		YouTube		Hollywood2		UCF sports	
	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories	KLT	Dense trajectories
Trajectory	88.4%	90.2%	58.2%	67.2%	46.2%	47.7%	72.8%	75.2%
HOG	84.0%	86.5%	71.0%	74.5%	41.0%	41.5%	80.2%	83.8%
HOF	92.4%	93.2%	64.1%	72.8%	48.4%	50.8%	72.7%	77.6%
MBH	93.4%	95.0%	72.9%	83.9%	48.6%	54.2%	78.4%	84.8%
Combined	93.4%	94.2%	79.9%	84.2%	54.6%	58.3%	82.1%	88.2%

Table 1. Comparison of KLT and dense trajectories as well as different descriptors on KTH, YouTube, Hollywood2 and UCF sports. We report average accuracy over all classes for KTH, YouTube and UCF sports and mean AP over all classes for Hollywood2.

Comparing to the state-of-the-art

KTH		YouTube		Hollywood2		UCF sports	
Laptev et al. [14]	91.8%	Liu <i>et al</i> . [16]	71.2%	Wang et al. [32]	47.7%	Wang <i>et al</i> . [32]	85.6%
Yuan et al. [35]	93.3%	Ikizler-Cinbis et al. [9]	75.21%	Gilbert et al. [8]	50.9%	Kovashka et al. [12]	87.27%
Gilbert et al. [8]	94.5%			Ullah et al. [31]	53.2%	Kläser et al. [10]	86.7%
Kovashka et al. [12]	94.53%			Taylor et al. [29]	46.6%		
Our method	94.2%	Our method	84.2%	Our method	58.3%	Our method	88.2%
Table 2. Comparison of our dense trajectories characterized by our combined descriptor (Trajectory+HOG+HOF+MBH) with state-of-the-							
art methods in the literature.							

Per-class accuracy analysis on YouTube

				100			
	KLT	Dense trajectories	Ikizler-Cinbis [9	9]			
b_shoot	34.0%	43.0%	48.48%				
bike	87.6%	91.7%	75.17%				
dive	99.0%	99.0%	95.0%				
golf	95.0%	97.0%	95.0%				
h_ride	76.0%	85.0%	73.0%				
s_juggle	65.0%	76.0%	53.0%				
swing	86.0%	88.0%	66.0%				
t_swing	71.0%	71.0%	77.0%				
t_jump	93.0%	94.0%	93.0%				
v_spike	96.0%	95.0%	85.0%				
walk	76.4%	87.0%	66.67%				
Accuracy	79.9%	84.2%	75.21%				
Table 3 Accuracy per action class for the YouTube dataset We							

Table 3. Accuracy per action class for the YouTube dataset. We compare with the results reported in [9].

Per-class **AP** analysis on **Hollywood2**

	KLT	Dense trajectories	Ullah [31]
AnswerPhone	18.3%	32.6%	25.9%
DriveCar	88.8%	88.0%	85.9%
Eat	73.4%	65.2%	56.4%
FightPerson	74.2%	81.4%	74.9%
GetOutCar	47.9%	52.7%	44.0%
HandShake	18.4%	29.6%	29.7%
HugPerson	42.6%	54.2%	46.1%
Kiss	65.0%	65.8%	55.0%
Run	76.3%	82.1%	69.4%
SitDown	59.0%	62.5%	58.9%
SitUp	27.7%	20.0%	18.4%
StandUp	63.4%	65.2%	57.4%
mAP	54.6	58.3%	51.8%

Table 4. Average precision per action class for the Hollywood2 dataset. We compare with the results reported in [31].

Varying hyper-parameters of the System

- L (Trajectory Length)
- W (Step Size)
- **N** (Neighborhood Size)
- **n_sigma** * **n_sigma** * **n_tau** (Grid Structure)

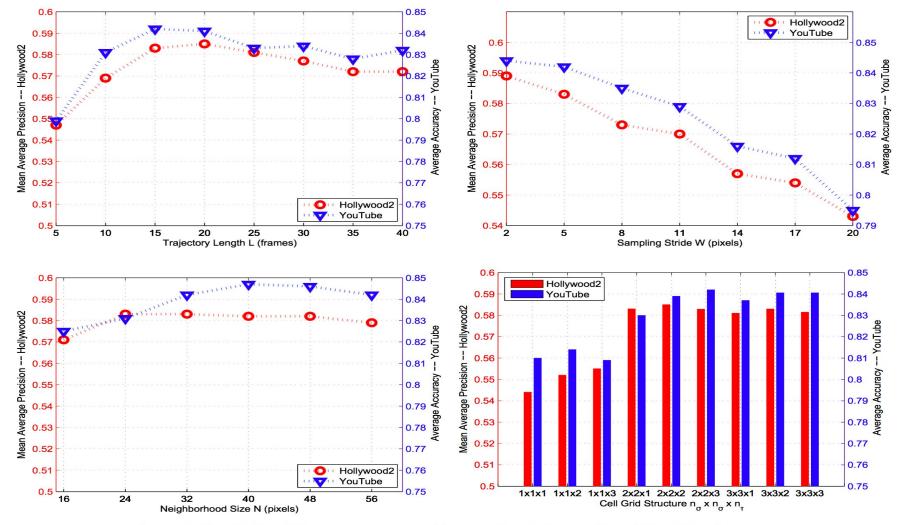
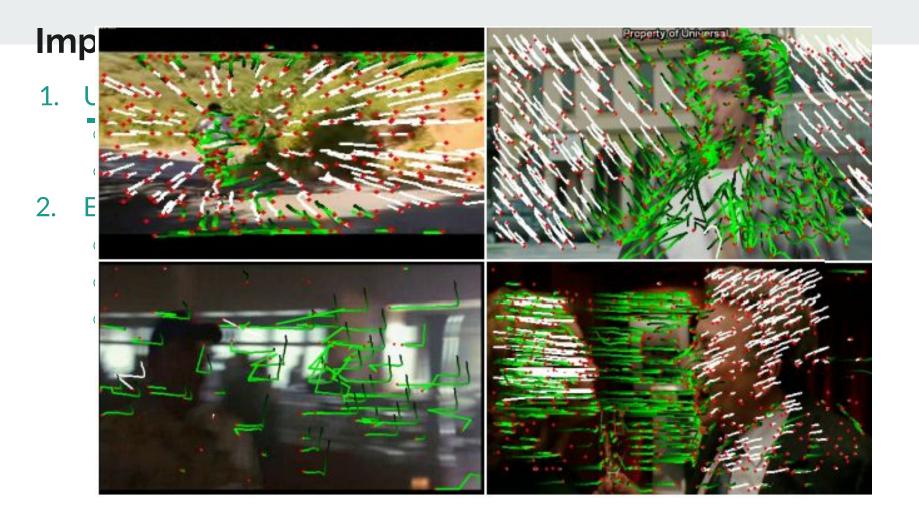


Figure 5. Results for different parameter settings on the Hollywood2 and YouTube datasets.

Improvements made by IDT:

- 1. Uses 2 types of features:
 - SURF focuses on blob-type structures,
 - Harris Corner Detector fires on corners edges
- 2. Remove majority trajectories
 - RANSAC on optical flow,SURF, & Harris
 - Correct for majority homography
 - threshold magnitude of the (u, v)



More Improvements made by IDT:

- 3. Human detector bounding box
 - mask to remove feature matches inside for when homography
- 4. Fisher Vector > Bag of Features
 - Uses PCA, Gaussian Mixture model, then classifies by Linear SVM

Thoughts on the paper (!!)

...

