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Overview

e Large-scale Video Classification with Convolutional Neural Networks
e Two-Stream Convolutional Networks for Action
Recognition in Videos
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Problem
Classification of videos in sports datasets
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Standard approach to video classification
Bag of Words (BoW) approach:
1. Extraction of local visual features (dense/sparse)
2. Visual word encoding of features
3. Training a classifier (e.g. SVM)

Convolutional Neural Networks (CNNs) emulate all these
stages in a single neural network




Motivations for using CNNs for video
classification

1. CNNs outperform other approaches in image
classification tasks (e.g. ImageNet challenge)

2. Features learned in CNNs transfer well to other
datasets (e.g. fine-tuning top layers of a network
trained using ImageNet for food recognition)




Dataset

Current video datasets lack variety and number of videos to train a CNN:
UCF 101 dataset : 13,320 videos, 101 classes
KTH (human action) : 2391 videos, 6 classes

Sports-1M dataset : 1.1 million videos, 487 classes (new!)
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Models
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Temporal Fusion in CNNs

2 single-frame networks 15 frames apart

Modify 1st convolutional layer to mergs in “1<E fillpeonnestad layer

be of size 11 x 11 x 3 x T pixels

The fully connected layer can compute

T =#{rames (authors use 10) global motion characteristics
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Multiresolution CNNs

To improve runtime performance:
Input = 178 x 178 frame video clip

Low-Res Context stream gets down sampled 89 x 89 (entire frame)
High-Res Fovea stream gets cropped center 89 x 89 patch
Both streams merge in 1st fully connected layer
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Multiresolution CNNs

To improve runtime performance:
Input = 178 x 178 frame video clip

Low-Res Context stream gets down sampled 89 x 89 (entire frame)
High-Res Fovea stream gets cropped center 89 x 89 patch
Both streams merge in 1st fully connected layer
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Train Procedure

Randomly sample a video
Sample a 15 frame (~0.5 secs) clip from (1)

Randomly crop, flip frames in clip, subtract mean of all pixels in images (data
augmentation + preprocessing)

Test Procedure is similar

3. Data augmentation

(random crops, flips)
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Experiments



Feature Histogram Baseline

1. Extraction of local visual features :
HoG, Texton, Cuboids, Hue-Saturation, Color
moments, #Faces detected

2. Visual word encoding of features:
Spatial pyramid encoding in histograms after k-
means : Finally obtain a 25,000 D feature vector for
the entire video

3. Training a classifier:
Use a 2-hidden layer neural net (worked better than
any linear classifier)



Testing Procedure

Randomly sample 20 clips for a given test video

Present each clip individually to the network (with
different crops and flips)

Individual clip class predictions are averaged to get
a class result for the entire video



Results on Sports-1M
dataset



Video Results
https://www.voutube.com/watch?v=qrz AB1DZK

Cycling Basketball

wheelchair basketball: 0.886
basketball: 0.083
streedtball: 0.008




Quantitative Results

Model Clip Hit@1 Video Hit@1 Video Hit@5
Feature Histograms + Neural Net - 35.3 -
Single-Frame 41.1 59.3 L1
Single-Frame + Multires 42.4 60.0 78.5
Single-Frame Fovea Only 30.0 49.9 128
Single-Frame Context Only 38.1 56.0 i 7
Early Fusion 38.9 1.7 76.8
Late Fusion 40.7 59.3 78.7
Slow Fusion 41.9 60.9 80.2
CNN Average (Single+Early+Late+Slow) 41.4 63.9 82.4



Qualitative Results

1. The confusion matrix shows that the network doesn’t do
well on fine-grained classification

2. Slow-fusion networks are sensitive to small motions, hence
“motion-aware”, but don’t work well with presence of
camera translation and zoom

' -

single frame predictions:
rope climbing
beach tennis
£ fings (gymnastics)
inhnc speed skating
modern pentathlon

short track motor racing
fouring car racing
dnfting (motorsport)
motorcycle racing

timc attack

"
L]
»

motion-aware predictions: motion-aware predictions:
lacklining dirt track racing
rope climbing dnifting (motorsport)
beach handball stock car racing
footvolicy rally cross

streetball

auto racing




Transfer Learning




UCF-101 dataset

5 main categories of data

1. Human Object Interaction
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2. Body-Motion only 2

3. Human-Human interaction
4. Playing Musical Instruments =
5. Sports

Soomro et al. ’12




Transfer Learning Performance

Model 3-fold Accuracy
Soomroetal [ ] 43.9%
Feature Histograms + Neural Net 59.0%
Train from scratch 41.3%
Fine-tune top layer 64.1%
Fine-tune top 3 layers 65.4%

Fine-tune all layers 62.2%




Performance By Categories

Group mAP mAP mAP
from fine-tune fine-tune
scratch top 3 top
Human-Object Interaction 0.26 0.55 0.52
Body-Motion Only 0.32 0.57 0.52
Human-Human Interaction 0.40 0.68 0.65
Playing Musical Instruments 0.42 0.65 0.46
Sports 0.57 0.79 0.80

All groups 0.44 0.68 0.66



Two-Stream Convolutional Networks for Action
Recognition in Videos

Authors: Karen Simonyan, Andrew Zisserman



Introduction



Motivation

e At this point, deep-learning approach to action recognition performs a
lot worse than best hand-crafted shallow representations.

e This paper aims to come up with a deep convolutional network
architecture that performs well in video action recognition tasks



Motivation

e Networks whose inputs are individual frames perform similarly to
networks whose inputs are stacks of frames. This suggests that
previous attempts did not capture motion in videos well and new
approaches needed to capture motion.



Approach



Architecture
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Figure 1: Two-stream architecture for video classification.




Temporal Network Input Variations:
Optical Flow Stacking vs Trajectory Stacking

— d-2(p,) > d-2(ps)
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Figure 3: ConvNet input derivation from the multi-frame optical flow. Left: optical flow stack-
ing (1) samples the displacement vectors d at the same location in multiple frames. Right: trajectory
stacking (2) samples the vectors along the trajectory. The frames and the corresponding displace-
ment vectors are shown with the same colour.



Temporal Network Input Variations:
Bidirectional Flows and Mean Flow Subtraction

e Consider both forward optical flows and backward optical flows
e For each displacement field, subtract the mean vector



Visualization of Learnt Convolutional Filters
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Multi-task Learning

e The temporal net needs to be trained on videos, but video dataset is
small

e Aim to learn a video representation that is applicable not only to the
task in question, but to all tasks

e For our network, two softmax layers are added to the top of the last
fully connected layers(one to compute HMDB-51 classification score,
the other one is to compute UCF-101 score)



Evaluation



Using the Spatial Net or Temporal Net Alone

Table 1: Individual ConvNets accuracy on UCF-101 (split 1).
(b) Temporal ConvNet.

(a) Spatial ConvNet.

Training setting

Dropout ratio

0.5 0.9

Input configuration

Mean subtraction

From scratch

42.5% | 52.3%

Pre-trained + fine-tuning

70.8% | 72.8%

off on
Single-frame optical flow (L = 1) - 73.9%
Optical flow stacking (1) (L = 5) 80.4%

Pre-trained + last layer

72.7% | 59.9%

Optical flow stacking (1) (L = 10)

79.9% | 81.0%

Trajectory stacking (2)(L = 10)

79.6% | 80.2%

Optical flow stacking (1)(L = 10), bi-dir.

5 81.2%




Temporal Net Performance on HMDB-51

Table 2: Temporal ConvNet accuracy on HMDB-51 (split 1 with additional training data).

Training setting Accuracy
Training on HMDB-51 without additional data 46.6%
Fine-tuning a ConvNet, pre-trained on UCF-101 49.0%

Training on HMDB-51 with classes added from UCF-101 52.8%
Multi-task learning on HMDB-51 and UCF-101 55.4%




Two Stream Network Performance

Table 3: Two-stream ConvNet accuracy on UCF-101 (split 1).

Spatial ConvNet Temporal ConvNet Fusion Method | Accuracy
Pre-trained + last layer | bi-directional averaging 85.6%
Pre-trained + last layer | uni-directional averaging 85.9%
Pre-trained + last layer | uni-directional, multi-task | averaging 86.2%
Pre-trained + last layer | uni-directional, multi-task | SVM 87.0%




Comparison with the State of Art
Table 4: Mean accuracy (over three splits) on UCF-101 and HMDB-51.

Method UCF-101 | HMDB-51

Improved dense trajectories (IDT) [26, 27] 85.9% 57.2%
IDT with higher-dimensional encodings [20] 87.9% 61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23]) - 66.8%
Spatio-temporal HMAX network [11, 16] - 22.8%
“Slow fusion” spatio-temporal ConvNet [14] 65.4% -

Spatial stream ConvNet 73.0% 40.5%
Temporal stream ConvNet 83.7% 54.6%
Two-stream model (fusion by averaging) 86.9% 58.0%
Two-stream model (fusion by SVM) 88.0% 59.4%




Future Work

e Train on Sports-1M(Huge Volume Presents Additional Challenge)
e Use more sophisticated techniques to correct camera motion



