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» Tradeoff
— Fast: Costly, small, close

— Slow: Cheap, large, far

» Based on two assumptions
— Temporal location: Will be accessed again soon

— Spatial location: Nearby data will be accessed soon

Multi-level caching in hardware

Caching in distributed systems
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Caching common in distributed systems

+ Web
— Web proxies at edge of enterprise networks

— “Server surrogates” in CDNs downstream of origin

* DNS
— Caching popular NS, A records

* File sharing
— Gnutella & flooding-based p2p networks

Caching within datacenter systems
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Caching within datacenter systems
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Cache management

* Write-through

— Data written simultaneously to cache and storage

» Write-back
— Data updated only in cache

— On cache eviction, written “back” to storage

Caching within datacenter systems

function get_foo(foo_id) /’8
foo = memcached_get("foo:" . foo_id)
— return foo if defined foo ‘)ﬁ
foo = fetch_foo_from_database(foo_id)
memcached_set("foo:" . foo_id, foo) \)@

return foo
end

New system / hardware
architectures:

New opportunities for caching
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Traditional architectures:
High-overhead for skewed/dynamic workloads
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Look-aside Look-through

» Cache must process all queries and handle misses

In our case, cache is small and hit ratio could be low
= Throughput is bounded by the cache I/O

= High latency for queries for uncached keys

SwitchKV: content-aware routing

clients OO DLD oo

controller D—(OpenFlow 3witches)——|:| cache

backends [] 81 oo

Switches route requests directly to the appropriate nodes

Latency can be minimized for all queries

Throughput can scale out with # of backends

Availability would not be affected by cache node failures

Exploit SDN and switch hardware

Clients encode key information in packet headers
= Encode key hash in MAC for read queries

= Encode destination backend ID in IP for all queries

+ Switches maintain forwarding rules and route query packets
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Keep cache and switch rules updated

» New challenges for cache updates
= Only cache the hottest O(nlogn) items

= Limited switch rule update rate

» Goal: react quickly to workload changes with minimal updates

switch rule update top-k <key, load> list
) { (periodic)
|—_£| fetch <key, value>
controller cache [« N e

X bursty hot <key, value> J
(instant)

Wednesday:

Welcome to B I G DATA



