Caching 50.5*

Basic caching rule

COS 518: Advanced Computer Systems
Lecture 9

Michael Freedman

* Half of 101

» Tradeoff
— Fast: Costly, small, close

— Slow: Cheap, large, far

» Based on two assumptions
— Temporal location: Will be accessed again soon

— Spatial location: Nearby data will be accessed soon

Multi-level caching in hardware

Caching in distributed systems

> Cache Remote
[(et ™ Memories
Eemate i (cc-NUMA System)

—e— DEC-Trace —8— UCB-Trace —=— PISA-Trace
10000 P2 10000 o+
1000
g 1000] g 100
H E H
s 100 s
5 100 3 s ®
& & &
s s 10 s
= 10 = = '0‘1
1 1 1
110 100 1000 1e+04ler0Sler06 110 100 10001e+041er05 110 100 10001e+041er05
Document Ranking Dogument Ranking Document Ranking
—a— QuestNet-Trace —&— NLANR-Trace —8— Funet-Trace

g
g

1000

E 1000 E E 1000
H £ 100 £
g g s
Z z :
s S 10 s
= 10 = = 10

1 1 1

110 100 10001e+04e+08le+06 110 100 1000 1e+04ie+0le+06 110 100 10001¢+04e+05ie+06

Document Ranking Document Ranking Document Ranking

Web Caching and Zipf-like Distributions: Evidence and Implications
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker 4

§ —— iki/C ory

Caching common in distributed systems

+ Web
— Web proxies at edge of enterprise networks

— “Server surrogates” in CDNs downstream of origin

* DNS
— Caching popular NS, A records

* File sharing
— Gnutella & flooding-based p2p networks

Caching within datacenter systems

—./:]
_'\CJ

——
load front-end DB / backend
balancers web servers
identical identical partitioned

Caching within datacenter systems

Hal
z

—
load front-end DB / backend
balancers web servers
identical identical partitioned

Caching within datacenter systems

load front-end
balancers web servers

DB / backend

identical identical partitioned partitioned

Caching within datacenter systems

load front-end — DB / backend
balancers web servers ! g
identical identical partitioned partitioned

Cache management

* Write-through

— Data written simultaneously to cache and storage

» Write-back
— Data updated only in cache

— On cache eviction, written “back” to storage

Caching within datacenter systems

function get_foo(foo_id) /’8
foo = memcached_get("foo:" . foo_id)
— return foo if defined foo ‘)ﬁ
foo = fetch_foo_from_database(foo_id)
memcached_set("foo:" . foo_id, foo) \)@

return foo
end

New system / hardware
architectures:

New opportunities for caching

Be Fast, Cheap and in Control
with SwitchKV

Xiaozhou Li
Raghav Sethi
Michael Kaminsky
David G. Andersen
Michael J. Freedman

NSDI 2016

Carnegie
PRINCETON A
UNIVERSITY untel Mellon’

University

Traditional architectures:
High-overhead for skewed/dynamic workloads

clients clients
oooooo oOoooooo

// \&fs / k fanure point
o —J i o

backends cache backends cache (Ioad balancer)

Look-aside Look-through

» Cache must process all queries and handle misses

In our case, cache is small and hit ratio could be low
= Throughput is bounded by the cache I/O

= High latency for queries for uncached keys

SwitchKV: content-aware routing

clients OO DLD oo

controller D—(OpenFlow 3witches)——|:| cache

backends [] 81 oo

Switches route requests directly to the appropriate nodes

Latency can be minimized for all queries

Throughput can scale out with # of backends

Availability would not be affected by cache node failures

Exploit SDN and switch hardware

Clients encode key information in packet headers
= Encode key hash in MAC for read queries

= Encode destination backend ID in IP for all queries

+ Switches maintain forwarding rules and route query packets

hit
L2 table ,__
RECEEO exact match rule per cached key Packet Out

to the cache
l miss

TCAM table

match rule per physical machine Packet Out

Keep cache and switch rules updated

» New challenges for cache updates
= Only cache the hottest O(nlogn) items

= Limited switch rule update rate

» Goal: react quickly to workload changes with minimal updates

switch rule update top-k <key, load> list
) { (periodic)
|—_£| fetch <key, value>
controller cache [« N e

X bursty hot <key, value> J
(instant)

Wednesday:

Welcome to B I G DATA

