
1

Naming and layering

Replicated storage, consistency

COS 518: Advanced Computer Systems
Lecture 2

Mike Freedman

Naming	and	system	components

• How	to	design	interface	between	components?

• Many	interactions	involve	naming	things
– Naming	objects	that	caller	asks	callee to	manipulate
– Naming	caller	and	callee together

Caller Callee

2

Potential	Name	Syntax
• Human	readable?

– If	users	interact	with	the	names

• Fixed	length?
– If	equipment	processes	at	high	speed

• Large	name	space?
– If	many	nodes	need	unique	names

• Hierarchical	names?
– If	the	system	is	very	large	and/or	federated

• Self-certifying?
– If	preventing	“spoofing”	is	important

3

Properties	of	Naming
• Enabling	sharing	in	applications

– Multiple	components	or	users	can	name	a	shared	object.
– Without	names,	client-server	interface	pass	entire	object	by	value

• Retrieval
– Accessing	same	object	later	on,	just	by	remembering	name

• Indirection	mechanism
– Component	A	knows	about	name	N
– Interposition:	can	change	what	N	refers	to	without	changing	A

• Hiding
– Hides	impl.	details,	don’t	know	where	google.com located
– For	security	purposes,	might	only	access	resource	if	know	name	(e.g.,	

dropbox or	Google	docs	URL	–>	knowledge	gives	access)	 4

2

Names	all	around…
• Registers:		LD	R0,	0x1234	
• IP	addresses:	128.112.132.86
• Host	names:	www.cs.princeton.edu
• Path	names:	/courses/archive/spring17/cos518/syllabus.html vs.	“syllabus.html”

• “..”	(to	parent	directory)
• URLs:	http://www.cs.princeton.edu/courses/archive/spring17/cos518/
• Email	addresses
• Function	names:		ls
• Phone	numbers:	609-258-9169		vs.		x8-9179
• SSNs

5

High-level	view	of	naming

• Set	of	possible	names

• Set	of	possible	values	that	names	map	to

• Lookup	algorithm	that	translates	name	to	value

• Optional	context	that	affects	the	lookup	algorithm

6

Helping	to	understand	naming	system

• Name	syntax?

• Values?

• Context	used	to	resolve	name?

• Who	supplies	context?

• Global	(context-free)	or	local	names?

7

• Host	names:www.cs.princeton.edu
– Mnemonic,	variable-length,	appreciated	by	humans
– Hierarchical,	based	on	organizations

• IP	addresses: 128.112.7.156
– Numerical	32-bit	address	appreciated	by	routers
– Hierarchical,	based	on	organizations	and	topology

• MAC	addresses: 00-15-C5-49-04-A9
– Numerical	48-bit	address	appreciated by	adapters
– Non-hierarchical,	unrelated	to	network	topology

Different	Kinds	of	Names

8

3

• Host	names:www.cs.princeton.edu
– Domain:	registrar	for	each	top-level	domain	(eg,	.edu)
– Host	name:	local	administrator	assigns	to	each	host

• IP	addresses: 128.112.7.156
– Prefixes:	ICANN,	regional	Internet	registries,	and	ISPs
– Hosts:	static	configuration,	or	dynamic	using	DHCP

• MAC	addresses: 00-15-C5-49-04-A9
– Blocks:	assigned	to	vendors	by	the	IEEE
– Adapters:	assigned	by	the	vendor	from	its	block

Hierarchical	Assignment	Processes

9

Case Study:
Domain Name System (DNS)

Computer science concepts underlying DNS
• Indirection: names in place of addresses
• Hierarchy: in names, addresses, and servers
• Caching: of mappings from names to/from addresses

10

Strawman	Solution	#1:	Local	File

• Original	name	to	address	mapping
– Flat	namespace
– /etc/hosts	
– SRI	kept	main	copy
– Downloaded	regularly

• Count	of	hosts	was	increasing:	moving	from	a	machine	
per	domain	to	machine	per	user
– Many	more	downloads
– Many	more	updates

11

Strawman	Solution	#2:	Central	Server

• Central	server
– One	place	where	all	mappings	are	stored
– All	queries	go	to	the	central	server

• Many	practical	problems
– Single	point	of	failure
– High	traffic	volume
– Distant	centralized	database
– Single	point	of	update
– Does	not	scale

Need a distributed, hierarchical collection of servers
12

4

Domain	Name	System	(DNS)

• Properties	of	DNS
– Hierarchical	name	space	divided	into	zones
– Distributed	over	a	collection	of	DNS	servers

• Hierarchy	of	DNS	servers
– Root	servers
– Top-level	domain	(TLD)	servers
– Authoritative	DNS	servers

• Performing	the	translations
– Local	DNS	servers	and	client	resolvers

13

Distributed	Hierarchical	Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

15

DNS	Queries

requesting	host
a.cs.princeton.edu

www.umass.edu

root	DNS	server	for	.

local	DNS	server
dns.princeton.edu

3

authoritative	DNS	server
for	umass.edu
dns.umass.edu

TLD	DNS	server	
for	.edu

a.cs.princeton.edu

wants	IP	address	for
www.umass.edu

Recursive	vs.	Iterative	Queries

local	DNS	server
dns.cs.princeton.edu

1

2

4
5

6

7
8

9

10

16

DNS	Queries

requesting	host
a.cs.princeton.edu

www.umass.edu

root	DNS	server	for	.

3

authoritative	DNS	server
for	umass.edu
dns.umass.edu

TLD	DNS	server	
for	.edu• DNS	query	latency:

– e.g.,	1	second

• Caching	to	reduce	overhead	
and	delay
– Small	#	of	top-level	servers,	
that	change	rarely

– Popular	sites	visited	often

• Where	to	cache?
– Local	DNS	server
– Browser

1

2

4
5

6

7
8

9

10

5

Reliability

• DNS	servers	are	replicated
– Name	service	available	if	at	least	one replica	is	up
– Queries	can	be	load	balanced	between	replicas

• UDP	used	for	queries
– Need	reliability:	must	implement	this	on	top	of	UDP

• Try	alternate	servers	on	timeout
– Exponential	backoff when	retrying	same	server

• Same	identifier	for	all	queries
– Don’t	care	which	server	responds

17

DNS	Cache	Consistency

• Goal:		Ensuring	cached	data	is	up	to	date

• DNS	design	considerations
– Cached	data	is	“read	only”
– Explicit	invalidation	would	be	expensive

• Server	would	need	to	keep	track	of	all	resolvers	caching

• Avoiding	stale	information
– Responses	include	a	“time	to	live”	(TTL)	field
– Delete	the	cached	entry	after	TTL	expires

• Perform	negative	caching	(for	dead	links,	misspellings)
– So	failures	quick	and	don’t	overload	gTLD servers

18

Layering

19

Layering

• Partition	the	system
– Each	layer	solely relies	on	services	from	layer	below	
– Each	layer	solely exports	services	to	layer	above

• Interface	between	layers	defines	interaction
– Hides	implementation	details
– Layers	can	change	without	disturbing	other	layers

6

• Open	Systems	Interconnection	(OSI)
– Developed	by	International	Organization	
for	Standardization	(OSI)	in	1984

– Seven	layers	

• Internet	Protocol	(IP)
– Only	five layers
– The	functionalities	of	the	missing	layers	
(i.e.,	Presentation	and	Session)	are	
provided	by	the	Application	layer

Transport

Network

Datalink

Session

Presentation

Application

Physical

OSI	Layering	Model

• Lower	three	layers	implemented	everywhere

• Top	two	layers	implemented	only	at	hosts

• Logically,	layers	interacts	with	peer’s	corresponding	layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Five	Layers	Summary

• Communication	goes	down	to	physical	network

• Then	from	network	peer	to	peer

• Then	up	to	relevant	layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Physical	Communication

101010100110101110

Transport	
Layer	

Trans.
Hdr.

Transport	
Layer	

Trans.
Hdr.

Network	
Layer	

Trans.
Hdr.

Net.
Hdr.

Network	
Layer	

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer	

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer	

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical	
Layer	

Physical	
Layer	101010100110101110

Data

Data

Data

Data

Data

Data

Data
Application	

Layer	
Application	

Layer	Data

Layer model and headers

7

• Layer	N	may	duplicate	layer	N-1	functionality	
– E.g.,	error	recovery	to	retransmit	lost	data

• Layers	may	need	same	information
– E.g.,	timestamps,	maximum	transmission	unit	size

• Layering	can	hurt	performance
– E.g.,	hiding	details	about	what	is	really	going	on

• Some	layers	are	not	always	cleanly	separated
– Inter-layer	dependencies	for	performance	reasons
– Some	dependencies	in	standards	(header	checksums)

• Headers	start	to	get	really	big
– Sometimes	header	bytes	>>	actual	content

Drawbacks of Layering Placing	Network	Functionality

• Hugely	influential	paper: “End-to-End	Arguments	in	
System	Design”	by	Saltzer,	Reed,	and	Clark (’84)

• “Sacred	Text”	of	the	Internet
– Endless	disputes	about	what	it	means
– Everyone	cites	it	as	supporting	their	position

– Paper Discussion –

27

Intro to
fault tolerant + consistency

28

8

• Building reliable systems	from	unreliable components

• Three	basic	steps

1. Detecting	errors:	discovering	presence	of	an	error	in	a	
data	value	or	control	signal

2. Containing	errors:	limiting	how	far	errors	propagate
3. Masking	errors:	designing	mechanisms	to	ensure	system	

operates	correctly	despite	error	(+	possibly	correct	error)

29

What	is	fault	tolerance?

• Say one	bit	in	a	DRAM	fails…

• …it	flips	a	bit	in	a	memory	address	the	
kernel	is	writing	to...

• ...causes	big	memory	error	elsewhere,	
or	a	kernel	panic...

• ...program	is	running	one	of	many	
distributed	file	system	storage	servers...

• ...a	client	can’t	read	from	FS,	so	it	hangs
30

Why	is	fault	tolerance	hard?

Failures
Propagate

1. Do	nothing:	silently	return	the	failure

2. Fail	fast:	detect	the	failure	and	report	at	interface
• Ethernet	station	jams	medium	on	detecting	collision	

3. Fail	safe:	transform	incorrect	behavior	or	values	into	
acceptable	ones

• Failed	traffic	light	controller	switches	to	blinking-red	

4. Mask	the	failure:	operate	despite	failure
• Retry	op	for	transient	errors,	use	error-correcting	code	for	

bit	flips,	replicate	data	in	multiple	places	
31

So	what	to	do?

• We	mask	failures	on	one	server via
– Atomic	operations
– Logging	and	recovery

• In	a	distributed	system	with	multiple	servers,	we	
might	replicate	some	or	all	servers

• But	if	you	give	a	mouse	some	replicated	servers
– She’s	going	to	need	to	figure	out	how	to	keep	the	state	of	
the	servers	consistent	(immediately?	eventually?)

32

Masking	failures

9

Safety and liveness

33

• This	is	hard!
– How	do	we	design	fault-tolerant	systems?
– How	do	we	know	if	we’re	successful?

• Often	use	“properties”	that	hold	true	for	every	
possible	execution

• We	focus	on	safety	and	liveness	properties

34

Reasoning	about	fault	tolerance

• “Bad	things”	don’t	happen
– No	stopped	or	deadlocked	states
– No	error	states

• Examples
– Mutual	exclusion:		two	processes	can’t	be	in	a	critical	
section	at	the	same	time

– Bounded	overtaking:		if	process	1	wants	to	enter	a	critical	
section,	process	2	can	enter	at	most	once	before	process	1

35

Safety

• “Good	things”	happen
– …eventually

• Examples
– Starvation	freedom:		process	1	can	eventually	enter	a	
critical	section	as	long	as	process	2	terminates

– Eventual	consistency:		if	a	value	in	an	application	doesn’t	
change,	two	servers	will	eventually	agree	on	its	value

36

Liveness

10

• “Good”	and	“bad”	are	application-specific

• Safety	is	very	important	in	banking	transactions

• Liveness	is	very	important	in	social	networking	sites

37

Often	a	tradeoff

Eventual Consistency

38

• Def’n:		If	no	new	updates	to	the	object,	eventually	all	
accesses	will	return	the	last	updated	value

• Common:		git,	iPhone	sync,	Dropbox,	Amazon	Dynamo

• Why	do	people	like	eventual	consistency?
– Fast	read/write	of	local	copy	(no	primary,	no	Paxos)
– Disconnected	operation

• Challenges
– How	do	you	discover	other	writes?
– How	do	you	resolve	conflicting	writes?

39

Eventual	consistency Two	prevailing	styles	of	discovery
• Gossip	pull	(“anti-entropy”)

– A	asks	B	for	something	it	is	trying	to	“find”
– Commonly	used	for	management	replicated	data

• Resolve	differences	between	DBs by	comparing	digests

• Gossip	push	(“rumor	mongering”):
– A	tells	B	something	B	doesn’t	know
– Gossip	for	multicasting

• Keep	sending	for	bounded	period	of	time:			O	(log	n)	
– Also	used	to	compute	aggregates

• Max,	min,	avg easy.		Sum	and	count	more	difficult.

• Push-pull	gossip
– Combines	both	:		O(n	log	log	n)	msgs to	spread	in	O(log	n)	time

11

Monday reading for everybody

Conflict resolution
in eventually consistent systems:

Bayou

41

