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Naming and layering

Replicated storage, consistency

COS 518: Advanced Computer Systems
Lecture 2

Mike Freedman

Naming	and	system	components

• How	to	design	interface	between	components?

• Many	interactions	involve	naming	things
– Naming	objects	that	caller	asks	callee to	manipulate
– Naming	caller	and	callee together

Caller Callee
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Potential	Name	Syntax
• Human	readable?

– If	users	interact	with	the	names

• Fixed	length?
– If	equipment	processes	at	high	speed

• Large	name	space?
– If	many	nodes	need	unique	names

• Hierarchical	names?
– If	the	system	is	very	large	and/or	federated

• Self-certifying?
– If	preventing	“spoofing”	is	important
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Properties	of	Naming
• Enabling	sharing	in	applications

– Multiple	components	or	users	can	name	a	shared	object.
– Without	names,	client-server	interface	pass	entire	object	by	value

• Retrieval
– Accessing	same	object	later	on,	just	by	remembering	name

• Indirection	mechanism
– Component	A	knows	about	name	N
– Interposition:	can	change	what	N	refers	to	without	changing	A

• Hiding
– Hides	impl.	details,	don’t	know	where	google.com located
– For	security	purposes,	might	only	access	resource	if	know	name	(e.g.,	

dropbox or	Google	docs	URL	–>	knowledge	gives	access)	 4
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Names	all	around…
• Registers:		LD	R0,	0x1234	
• IP	addresses:	128.112.132.86
• Host	names:	www.cs.princeton.edu
• Path	names:	/courses/archive/spring17/cos518/syllabus.html vs.	“syllabus.html”

• “..”	(to	parent	directory)
• URLs:	http://www.cs.princeton.edu/courses/archive/spring17/cos518/
• Email	addresses
• Function	names:		ls
• Phone	numbers:	609-258-9169		vs.		x8-9179
• SSNs
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High-level	view	of	naming

• Set	of	possible	names

• Set	of	possible	values	that	names	map	to

• Lookup	algorithm	that	translates	name	to	value

• Optional	context	that	affects	the	lookup	algorithm
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Helping	to	understand	naming	system

• Name	syntax?

• Values?

• Context	used	to	resolve	name?

• Who	supplies	context?

• Global	(context-free)	or	local	names?
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• Host	names:www.cs.princeton.edu
– Mnemonic,	variable-length,	appreciated	by	humans
– Hierarchical,	based	on	organizations

• IP	addresses: 128.112.7.156
– Numerical	32-bit	address	appreciated	by	routers
– Hierarchical,	based	on	organizations	and	topology

• MAC	addresses: 00-15-C5-49-04-A9
– Numerical	48-bit	address	appreciated by	adapters
– Non-hierarchical,	unrelated	to	network	topology

Different	Kinds	of	Names

8
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• Host	names:www.cs.princeton.edu
– Domain:	registrar	for	each	top-level	domain	(eg,	.edu)
– Host	name:	local	administrator	assigns	to	each	host

• IP	addresses: 128.112.7.156
– Prefixes:	ICANN,	regional	Internet	registries,	and	ISPs
– Hosts:	static	configuration,	or	dynamic	using	DHCP

• MAC	addresses: 00-15-C5-49-04-A9
– Blocks:	assigned	to	vendors	by	the	IEEE
– Adapters:	assigned	by	the	vendor	from	its	block

Hierarchical	Assignment	Processes
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Case Study:
Domain Name System (DNS)

Computer science concepts underlying DNS
• Indirection:  names in place of addresses
• Hierarchy:  in names, addresses, and servers
• Caching:  of mappings from names to/from addresses
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Strawman	Solution	#1:	Local	File

• Original	name	to	address	mapping
– Flat	namespace
– /etc/hosts	
– SRI	kept	main	copy
– Downloaded	regularly

• Count	of	hosts	was	increasing:	moving	from	a	machine	
per	domain	to	machine	per	user
– Many	more	downloads
– Many	more	updates
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Strawman	Solution	#2:	Central	Server

• Central	server
– One	place	where	all	mappings	are	stored
– All	queries	go	to	the	central	server

• Many	practical	problems
– Single	point	of	failure
– High	traffic	volume
– Distant	centralized	database
– Single	point	of	update
– Does	not	scale

Need a distributed, hierarchical collection of servers
12
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Domain	Name	System	(DNS)

• Properties	of	DNS
– Hierarchical	name	space	divided	into	zones
– Distributed	over	a	collection	of	DNS	servers

• Hierarchy	of	DNS	servers
– Root	servers
– Top-level	domain	(TLD)	servers
– Authoritative	DNS	servers

• Performing	the	translations
– Local	DNS	servers	and	client	resolvers
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Distributed	Hierarchical	Database
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DNS	Queries

requesting	host
a.cs.princeton.edu

www.umass.edu

root	DNS	server	for	.

local	DNS	server
dns.princeton.edu
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authoritative	DNS	server
for	umass.edu
dns.umass.edu

TLD	DNS	server	
for	.edu

a.cs.princeton.edu

wants	IP	address	for
www.umass.edu

Recursive	vs.	Iterative	Queries

local	DNS	server
dns.cs.princeton.edu
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DNS	Queries

requesting	host
a.cs.princeton.edu

www.umass.edu

root	DNS	server	for	.

3

authoritative	DNS	server
for	umass.edu
dns.umass.edu

TLD	DNS	server	
for	.edu• DNS	query	latency:

– e.g.,	1	second

• Caching	to	reduce	overhead	
and	delay
– Small	#	of	top-level	servers,	
that	change	rarely

– Popular	sites	visited	often

• Where	to	cache?
– Local	DNS	server
– Browser

1

2

4
5

6

7
8

9

10



5

Reliability

• DNS	servers	are	replicated
– Name	service	available	if	at	least	one replica	is	up
– Queries	can	be	load	balanced	between	replicas

• UDP	used	for	queries
– Need	reliability:	must	implement	this	on	top	of	UDP

• Try	alternate	servers	on	timeout
– Exponential	backoff when	retrying	same	server

• Same	identifier	for	all	queries
– Don’t	care	which	server	responds
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DNS	Cache	Consistency

• Goal:		Ensuring	cached	data	is	up	to	date

• DNS	design	considerations
– Cached	data	is	“read	only”
– Explicit	invalidation	would	be	expensive

• Server	would	need	to	keep	track	of	all	resolvers	caching

• Avoiding	stale	information
– Responses	include	a	“time	to	live”	(TTL)	field
– Delete	the	cached	entry	after	TTL	expires

• Perform	negative	caching	(for	dead	links,	misspellings)
– So	failures	quick	and	don’t	overload	gTLD servers
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Layering
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Layering

• Partition	the	system
– Each	layer	solely relies	on	services	from	layer	below	
– Each	layer	solely exports	services	to	layer	above

• Interface	between	layers	defines	interaction
– Hides	implementation	details
– Layers	can	change	without	disturbing	other	layers
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• Open	Systems	Interconnection	(OSI)
– Developed	by	International	Organization	
for	Standardization	(OSI)	in	1984

– Seven	layers	

• Internet	Protocol	(IP)
– Only	five layers
– The	functionalities	of	the	missing	layers	
(i.e.,	Presentation	and	Session)	are	
provided	by	the	Application	layer

Transport

Network

Datalink

Session

Presentation

Application

Physical

OSI	Layering	Model

• Lower	three	layers	implemented	everywhere

• Top	two	layers	implemented	only	at	hosts

• Logically,	layers	interacts	with	peer’s	corresponding	layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Five	Layers	Summary

• Communication	goes	down	to	physical	network

• Then	from	network	peer	to	peer

• Then	up	to	relevant	layer
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• Layer	N	may	duplicate	layer	N-1	functionality	
– E.g.,	error	recovery	to	retransmit	lost	data

• Layers	may	need	same	information
– E.g.,	timestamps,	maximum	transmission	unit	size

• Layering	can	hurt	performance
– E.g.,	hiding	details	about	what	is	really	going	on

• Some	layers	are	not	always	cleanly	separated
– Inter-layer	dependencies	for	performance	reasons
– Some	dependencies	in	standards	(header	checksums)

• Headers	start	to	get	really	big
– Sometimes	header	bytes	>>	actual	content

Drawbacks of Layering Placing	Network	Functionality

• Hugely	influential	paper: “End-to-End	Arguments	in	
System	Design”	by	Saltzer,	Reed,	and	Clark (’84)

• “Sacred	Text”	of	the	Internet
– Endless	disputes	about	what	it	means
– Everyone	cites	it	as	supporting	their	position

– Paper Discussion  –

27

Intro to 
fault tolerant + consistency

28
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• Building reliable systems	from	unreliable components

• Three	basic	steps

1. Detecting	errors:	discovering	presence	of	an	error	in	a	
data	value	or	control	signal

2. Containing	errors:	limiting	how	far	errors	propagate
3. Masking	errors:	designing	mechanisms	to	ensure	system	

operates	correctly	despite	error	(+	possibly	correct	error)
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What	is	fault	tolerance?

• Say one	bit	in	a	DRAM	fails…

• …it	flips	a	bit	in	a	memory	address	the	
kernel	is	writing	to...

• ...causes	big	memory	error	elsewhere,	
or	a	kernel	panic...

• ...program	is	running	one	of	many	
distributed	file	system	storage	servers...

• ...a	client	can’t	read	from	FS,	so	it	hangs
30

Why	is	fault	tolerance	hard?

Failures
Propagate

1. Do	nothing:	silently	return	the	failure

2. Fail	fast:	detect	the	failure	and	report	at	interface
• Ethernet	station	jams	medium	on	detecting	collision	

3. Fail	safe:	transform	incorrect	behavior	or	values	into	
acceptable	ones

• Failed	traffic	light	controller	switches	to	blinking-red	

4. Mask	the	failure:	operate	despite	failure
• Retry	op	for	transient	errors,	use	error-correcting	code	for	

bit	flips,	replicate	data	in	multiple	places	
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So	what	to	do?

• We	mask	failures	on	one	server via
– Atomic	operations
– Logging	and	recovery

• In	a	distributed	system	with	multiple	servers,	we	
might	replicate	some	or	all	servers

• But	if	you	give	a	mouse	some	replicated	servers
– She’s	going	to	need	to	figure	out	how	to	keep	the	state	of	
the	servers	consistent	(immediately?	eventually?)

32

Masking	failures
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Safety and liveness
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• This	is	hard!
– How	do	we	design	fault-tolerant	systems?
– How	do	we	know	if	we’re	successful?

• Often	use	“properties”	that	hold	true	for	every	
possible	execution

• We	focus	on	safety	and	liveness	properties
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Reasoning	about	fault	tolerance

• “Bad	things”	don’t	happen
– No	stopped	or	deadlocked	states
– No	error	states

• Examples
– Mutual	exclusion:		two	processes	can’t	be	in	a	critical	
section	at	the	same	time

– Bounded	overtaking:		if	process	1	wants	to	enter	a	critical	
section,	process	2	can	enter	at	most	once	before	process	1
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Safety

• “Good	things”	happen
– …eventually

• Examples
– Starvation	freedom:		process	1	can	eventually	enter	a	
critical	section	as	long	as	process	2	terminates

– Eventual	consistency:		if	a	value	in	an	application	doesn’t	
change,	two	servers	will	eventually	agree	on	its	value

36

Liveness
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• “Good”	and	“bad”	are	application-specific

• Safety	is	very	important	in	banking	transactions

• Liveness	is	very	important	in	social	networking	sites
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Often	a	tradeoff

Eventual Consistency
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• Def’n:		If	no	new	updates	to	the	object,	eventually	all	
accesses	will	return	the	last	updated	value

• Common:		git,	iPhone	sync,	Dropbox,	Amazon	Dynamo

• Why	do	people	like	eventual	consistency?
– Fast	read/write	of	local	copy	(no	primary,	no	Paxos)
– Disconnected	operation

• Challenges
– How	do	you	discover	other	writes?
– How	do	you	resolve	conflicting	writes?
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Eventual	consistency Two	prevailing	styles	of	discovery
• Gossip	pull	(“anti-entropy”)

– A	asks	B	for	something	it	is	trying	to	“find”
– Commonly	used	for	management	replicated	data

• Resolve	differences	between	DBs by	comparing	digests

• Gossip	push	(“rumor	mongering”):
– A	tells	B	something	B	doesn’t	know
– Gossip	for	multicasting

• Keep	sending	for	bounded	period	of	time:			O	(log	n)	
– Also	used	to	compute	aggregates

• Max,	min,	avg easy.		Sum	and	count	more	difficult.

• Push-pull	gossip
– Combines	both	:		O(n	log	log	n)	msgs to	spread	in	O(log	n)	time
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Monday reading for everybody

Conflict resolution 
in eventually consistent systems:

Bayou
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