Cluster Scheduling

COS 518: Advanced Computer Systems
Lecture 14
Michael Freedman

[Heavily based on content from Ion Stoica]

1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning
2. The elimination of an up-front commitment
3. The ability to pay for use of computing resources on a short-term basis

From "Above the Clouds: A Berkeley View of Cloud Computing"

Key aspects of cloud computing

Two main sources of resource demand

- “Services”
 - External demand, scale supply to match demand
- “Data analysis”
 - Tradeoff scale & completion time
 - E.g., use 1 server for 10 hours vs. 10 servers for 1 hour
 - Source of demand elasticity!

Towards fuller utilization

- Source of variable demand?
 - Search, social networks, e-commerce, usage have diurnal patterns
 - Apocryphal story: AWS exists because Amazon needed to provision for holiday shopping season, wanted to monetize spare capacity
- But…if provision for peak, what around remaining time?
 - Fill-in with non-time-sensitive usage, e.g., various data crunching
 - E.g., Netflix using AWS at night for video transcoding

<table>
<thead>
<tr>
<th>Type of contract</th>
<th>2016 Price (m4.xlarge)</th>
<th>2017 Price (m4.xlarge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot - 1 hr duration</td>
<td>$0.139 / hour</td>
<td>$0.10 / hour</td>
</tr>
<tr>
<td>Spot - 6 hr duration</td>
<td>$0.176 / hour</td>
<td>$0.13 / hour</td>
</tr>
<tr>
<td>On-demand</td>
<td>$0.215 / hour</td>
<td>$0.20 / hour</td>
</tr>
</tbody>
</table>
Today’s lecture

• Metrics / goals for scheduling resources
• System architecture for big-data scheduling

What do we want from a scheduler?

• Isolation
 – Have some sort of guarantee that misbehaved processes cannot affect me “too much”

• Efficient resource usage
 – Resource is not idle while there is process whose demand is not fully satisfied
 – “Work conservation” -- not achieved by hard allocations

• Flexibility
 – Can express some sort of priorities, e.g., strict or time based

Scheduling: An old problem

• CPU allocation
 – Multiple processors want to execute, OS selects one to run for some amount of time

• Bandwidth allocation
 – Packets from multiple incoming queue want to be transmitted out some link, switch chooses one

Single Resource: Fair Sharing

• n users want to share a resource (e.g. CPU)
 – Solution: give each $1/n$ of the shared resource

• Generalized by max-min fairness
 – Handles if a user wants less than its fair share
 – E.g. user 1 wants no more than 20%

• Generalized by weighted max-min fairness
 – Give weights to users according to importance
 – User 1 gets weight 1, user 2 weight 2
Max-Min Fairness is Powerful

- Weighted Fair Sharing / Proportional Shares
 - User u1 gets weight 2, u2 weight 1
- Priorities: Give u1 weight 1000, u2 weight 1
- Reservations
 - Ensure u1 gets 10%: Give u1 weight 10, sum weights ≤ 100
- Deadline-based scheduling
 - Given a job's demand and deadline, compute user's reservation / weight
- Isolation: Users cannot affect others beyond their share

Max-min Fairness via Fair Queuing

- Fair queuing explained in a fluid flow system:
 reduces to bit-by-bit round robin among flows
 - Each flow receives \(\min(r_i, f) \), where
 - \(r_i \) — flow arrival rate
 - \(f \) — link fair rate (see next slide)
- Weighted Fair Queuing (WFQ)
 - Associate a weight with each flow

Fair Rate Computation

- If link congested, compute \(f \) such that

\[
\sum_i \min(r_i, f) = C
\]

<table>
<thead>
<tr>
<th>(f = 4):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min(8, 4) = 4)</td>
</tr>
<tr>
<td>(\min(6, 4) = 4)</td>
</tr>
<tr>
<td>(\min(2, 4) = 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(f = 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\min(8, 2\times 3) = 6)</td>
</tr>
<tr>
<td>(\min(6, 2\times 1) = 2)</td>
</tr>
<tr>
<td>(\min(2, 2\times 1) = 2)</td>
</tr>
</tbody>
</table>

Fair Rate Computation

- Associate a weight \(w_i \) with each flow \(i \)
- If link congested, compute \(f \) such that

\[
\sum_i \min(r_i, f \times w_i) = C
\]

- \((w_1 = 3) \)
- \((w_2 = 1) \)
- \((w_3 = 1) \)
Theoretical Properties of Max-Min Fairness

- **Share guarantee**
 - Each user gets at least $1/n$ of the resource
 - But will get less if her demand is less

- **Strategy-proof**
 - Users are not better off by asking for more than they need
 - Users have no reason to lie

Why is Max-Min Fairness Not Enough?

- Job scheduling is not only about a *single* resource
 - Tasks consume CPU, memory, network and disk I/O

- What are task demands today?

Heterogeneous Resource Demands

- 2 resources: CPUs & memory
- User 1 wants \(<1 \text{ CPU, 4 GB}>\) per task
- User 2 wants \(<3 \text{ CPU, 1 GB}>\) per task

- *What’s a fair allocation?*

2000-node Hadoop Cluster at Facebook (Oct 2010)
A Natural Policy

- **Asset Fairness**: Equalize each user's sum of resource shares

- Cluster with 28 CPUs, 56 GB RAM
 - U_1 needs <1 CPU, 2 GB RAM> per task, or <3.6% CPUs, 3.6% RAM> per task
 - U_2 needs <1 CPU, 4 GB RAM> per task, or <3.6% CPUs, 7.2% RAM> per task

- Asset fairness yields
 - U_1: 12 tasks: <43% CPUs, 43% RAM> ($\Sigma=86\%)$
 - U_2: 8 tasks: <28% CPUs, 57% RAM> ($\Sigma=86\%)$

Strawman for asset fairness

- Approach: Equalize each user's sum of resource shares

- Cluster with 28 CPUs, 56 GB RAM
 - U_1 needs <1 CPU, 2 GB RAM> per task, or <3.6% CPUs, 3.6% RAM> per task
 - U_2 needs <1 CPU, 4 GB RAM> per task, or <3.6% CPUs, 7.2% RAM> per task

- Problem: violates share guarantee
 - User 1 has < 50% of both CPUs and RAM
 - Better off in separate cluster with half the resources

- Asset fairness yields
 - U_1: 12 tasks: <43% CPUs, 43% RAM> ($\Sigma=86\%)$
 - U_2: 8 tasks: <28% CPUs, 57% RAM> ($\Sigma=86\%)$

Cheating the Scheduler

- Users willing to game the system to get more resources

- Real-life examples
 - A cloud provider had quotas on map and reduce slots
 Some users found out that the map-quota was low.
 Users implemented maps in the reduce slots!
 - A search company provided dedicated machines to users that could ensure certain level of utilization (e.g., 80%).
 Users used busy-loops to inflate utilization.

- How achieve share guarantee + strategy proofness for sharing?
 - Generalize max-min fairness to multiple resources/

Dominant Resource Fairness (DRF)

- A user’s dominant resource is resource user has biggest share of

- Example:
 - Total resources:
 - User 1’s allocation: 8 CPU 2 GB
 - 25% CPUs 20% RAM
 - Dominant resource of User 1 is CPU (as 25% > 20%)

- A user’s dominant share: fraction of dominant resource allocated
 - User 1’s dominant share is 25%
Dominant Resource Fairness (DRF)

• Apply max-min fairness to dominant shares

• Equalize the dominant share of the users. Example:
 – Total resources: <9 CPU, 18 GB>
 – User 1 demand: <1 CPU, 4 GB>; dom res: mem (1/9 < 4/18)
 – User 2 demand: <3 CPU, 1 GB>; dom res: CPU (3/9 > 1/18)

Online DRF Scheduler
Whenever available resources and tasks to run:
Schedule task to user with smallest dominant share

Many Competing Frameworks

• Many different “Big Data” frameworks
 – Hadoop | Spark
 – Storm | Spark Streaming | Flink
 – GraphLab
 – MPI

• Heterogeneity will rule
 – No single framework optimal for all applications
 – So...each framework runs on dedicated cluster?

Today’s lecture

1. Metrics / goals for scheduling resources

2. System architecture for big-data scheduling
One Framework Per Cluster Challenges

- Inefficient resource usage
 - E.g., Hadoop cannot use underutilized resources from Spark
 - Not work conserving

- Hard to share data
 - Copy or access remotely, expensive

- Hard to cooperate
 - E.g., Not easy for Spark to use graphs generated by Hadoop

Common resource sharing layer?

- Abstracts (“virtualizes”) resources to frameworks
- Enable diverse frameworks to share cluster
- Make it easier to develop and deploy new frameworks

Abstraction hierarchy 101

In a cluster:

... a framework (e.g., Hadoop, Spark) manages 1+ jobs

... a job consists of 1+ tasks

... a task (e.g., map, reduce) involves 1+ processes executing on single machine

- Seek fine-grained resource sharing
 - Tasks typically short: median ~ 10 sec – minutes
 - Better data locality / failure-recovery if tasks fine-grained
Approach #1: Global scheduler

- Global scheduler takes input, outputs task schedule
 - Organization policies
 - Resource Availability
 - Estimates: Task durations, input sizes, xfer sizes, ...
 - Job requirements: Latency, throughput, availability...
 - Job execution plan: Task DAG, inputs/outputs

- Advantages: "Optimal"
- Disadvantages
 - More complex, harder to scale (yet Google: 10,000s servers/scheduler)
 - Anticipate future requirements, refactor existing

Google’s Borg

- Centralized Borgmaster + Localized Borglet (manage/monitor tasks)
- Goal: Find machines for a given job

```plaintext
def hello()
  runtime = { cell = "ic" }
  binary = '../hello_webserver'
  args = { port = '%port%' }
  requirements = { RAM = 100M, disk = 100M, CPU = 0.1 }
  replicas = 10000
```

Large-scale cluster management at Google with Borg
Approach #2: Offers, not schedule

- Unit of allocation: resource offer
 - Vector of available resources on a node
 - E.g., node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

1. Master sends resource offers to frameworks
2. Frameworks:
 - Select which offers to accept
 - Perform task scheduling
 - Unlike global scheduler, requires another level of support

How to allocate resources? DRF!

<table>
<thead>
<tr>
<th>CPU</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Supply</td>
<td>10</td>
</tr>
<tr>
<td>A’s Demand</td>
<td>4 (40%)</td>
</tr>
<tr>
<td>B’s Demand</td>
<td>1 (10%)</td>
</tr>
</tbody>
</table>

Today’s lecture

- Metrics / goals for scheduling resources
 - Max-min fairness, weighted-fair queuing, DRF
- System architecture for big-data scheduling
 - Central allocator (Borg), two-level resource offers (Mesos)