Batch Processing

Basic architecture in “big data” systems
Basic architecture

Clients submit applications to the cluster manager

Cluster manager assigns cluster resources to applications

Each **Worker** launches containers for each application

Driver containers run main method of user program

Executor containers run actual computation

Examples of cluster manager: YARN, Mesos

Examples of computing frameworks: Hadoop MapReduce, Spark
Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications
Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that operates on one partition

Some advantages:
Applications need not be concerned with resource fairness
Cluster manager need not be concerned with individual tasks
Easy to implement priorities and preemption

Case Study: MapReduce
(Data-parallel programming at scale)

Application: Word count

Hello my love. I love you, my dear. Goodbye.

hello: 1, my: 2, love: 2, i: 1, dear: 1, goodbye: 1

Application: Word count

Locally: tokenize and put words in a hash map

How do you parallelize this?
Split document by half
Build two hash maps, one for each half
Merge the two hash maps (by key)
How do you do this in a distributed environment?

When in the Course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume, among the Powers of the earth, the separate and equal station to which the Laws of Nature and of Nature’s God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.

Partition
Merging results computed locally

Several options

Don’t merge — requires additional computation for correct results

Send everything to one node — what if data is too big? Too slow...

Partition key space among nodes in cluster (e.g. [a-e], [f-j], [k-p]...)

1. Assign a key space to each node
2. Partition local results by the key spaces
3. Fetch and merge results that correspond to the node’s key space

Now what...

How to merge results?

requires: 1, that: 1,
they: 1, should: 1,
declare: 1, the: 1,
causes: 1, which: 1 ...

when: 1, in: 1,
the: 1, course: 1,
of: 1, human: 1,
events: 1, it: 1 ...

dissolve: 1, the: 2,
political: 1, bands: 1, which: 1, have: 1, connected: 1, them: 1 ...

among: 1, the: 2,
powers: 1, of: 2,
earth: 1, separate: 1, equal: 1, and: 1 ...

nature: 2, and: 1, of: 2, god: 1, entitle: 1, then: 1, decent: 1, respect: 1, mankind: 1, opinion: 1 ...

requires: 1, that: 1,
they: 1, should: 1,
declare: 1, the: 1,
causes: 1, which: 1 ...

when: 1, in: 1,
the: 1, course: 1,
of: 1, human: 1,
events: 1, it: 1 ...

dissolve: 1, the: 2,
political: 1, bands: 1, which: 1, have: 1, connected: 1, them: 1 ...

among: 1, the: 2,
powers: 1, of: 2,
earth: 1, separate: 1, equal: 1, and: 1 ...

nature: 2, and: 1, of: 2, god: 1, entitle: 1, then: 1, decent: 1, respect: 1, mankind: 1, opinion: 1 ...
MapReduce

Partition dataset into many chunks

Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results from all other nodes

MapReduce Interface

map(key, value) -> list(<k’, v’>)
Apply function to (key, value) pair
Outputs set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>
Applies aggregation function to values
Outputs result

MapReduce: Word count

map(key, value):
 // key = document name
 // value = document contents
 for each word w in value:
 emit (w, 1)

reduce(key, values):
 // key = the word
 // values = number of occurrences of that word
 count = sum(values)
 emit (key, count)
Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers

How would you express this as a distributed application?
In particular, what would the map and reduce phases look like?

Hint: use a heap…

Assuming that a set of K integers fit in memory…

Key idea...

Map phase: everyone maintains a heap of K elements
Reduce phase: merge the heaps until you’re left with one
Brainstorm: Top K

Problem: What are the keys and values here?
No notion of key here, just assign the same key to all the values (e.g. key = 1)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))
Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))
Map task 3: [3, 3, 3, 3, 300, 3] → (1, heap(300, 3, 3))
Map task 4: [8, 15, 20015, 89] → (1, heap(20015, 89, 15))

Then all the heaps will go to a single reducer responsible for the key 1
This works, but clearly not scalable…

Brainstorm: Top K

Idea: Use X different keys to balance load (e.g. X = 2 here)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))
Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))
Map task 3: [3, 3, 3, 3, 300, 3] → (2, heap(300, 3, 3))
Map task 4: [8, 15, 20015, 89] → (2, heap(20015, 89, 15))

Then all the heaps will (hopefully) go to X different reducers
Rinse and repeat *(what’s the runtime complexity?)*

Case Study: Spark

(Data-parallel programming at scale)

What is Spark?

General distributed data execution engine

Key optimizations
- General computation graphs (pipelining, lazy execution)
- In-memory data sharing (caching)
- Fine-grained fault tolerance

#1 most active big data project
What is Spark?

Spark computational model

Most computation can be expressed in terms of two phases:

- **Map phase** defines how each machine processes its individual partition.
- **Reduce phase** defines how to merge map outputs from previous phase.

Spark expresses computation as a DAG of maps and reduces.
Spark: Word count

Transformations express how to process a dataset
Actions express how to turn a transformed dataset into results

```scala
sc.textFile("declaration-of-independence.txt")
  .flatMap { line => line.split(" ") }
  .map { word => (word, 1) }
  .reduceByKey { case (counts1, counts2) => counts1 + counts2 }
  .collect()
```

Pipelining + Lazy execution

Transformations can be pipelined until we hit
- A synchronization barrier (e.g. reduce), or
- An action

Example:
```
data.map {...}.filter {...}.flatMap {...}.groupBy().count()
```

These three operations can all be run in the same task
This allows lazy execution; we don’t need to eagerly execute map

In-memory caching

Store intermediate results in memory to bypass disk access
Important for iterative workloads (e.g. machine learning!)

Example:
```
val cached = data.map {...}.filter {...}.cache()
(1 to 100).foreach { i =>
  cached.reduceByKey {...}.saveAsTextFile(...)
}
```

Reusing map outputs

Reusing map outputs allows Spark to avoid redoing map stages
Along with caching, this makes iterative workloads much faster

Example:
```
val transformed = data.map {...}.reduceByKey {...}
transformed.collect()
transformed.collect() // does not run map phase again
```
Logistic Regression Performance

![Diagram showing Logistic Regression Performance]

Running Time (s)

Number of Iterations

- Hadoop: 127 s / iteration
- Spark: first iteration 174 s, further iterations 6 s

Application: Word Count

```
SELECT count(word) FROM data
  GROUP BY word
```

cat data.txt
 | tr -s '[:punct:][:space:]' '
' | sort | uniq -c

Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output
3. Compute word count on merged outputs

Monday

Stream processing
Using partial aggregation

1. In parallel, send to worker:
 - Compute word counts from individual files
 - Collect result, wait until all finished
2. Then merge intermediate output
3. Compute word count on merged intermediates

MapReduce: Programming Interface

map(key, value) → list(<k’, v’>)
 - Apply function to (key, value) pair and produces set of intermediate pairs
reduce(key, list<value>) → <k’, v’>
 - Applies aggregation function to values
 - Outputs result

MapReduce: Optimizations

combine(list<key, value>) → list<k,v>
 - Perform partial aggregation on mapper node:
 <the, 1>, <the, 1>, <the, 1> → <the, 3>
 - reduce() should be commutative and associative

partition(key, int) → int
 - Need to aggregate intermediate vals with same key
 - Given n partitions, map key to partition 0 ≤ i < n
 - Typically via hash(key) mod n
Fault Tolerance in MapReduce

- Map worker writes intermediate output to local disk, separated by partitioning. Once completed, tells master node.
- Reduce worker told of location of map task outputs, pulls their partition’s data from each mapper, execute function across data
- Note:
 - “All-to-all” shuffle b/w mappers and reducers
 - Written to disk (“materialized”) b/w each stage

Fault Tolerance in MapReduce

- Master node monitors state of system
 - If master failures, job aborts and client notified
- Map worker failure
 - Both in-progress/completed tasks marked as idle
 - Reduce workers notified when map task is re-executed on another map worker
- Reducer worker failure
 - In-progress tasks are reset to idle (and re-executed)
 - Completed tasks had been written to global file system

Straggler Mitigation in MapReduce

- Tail latency means some workers finish late
- For slow map tasks, execute in parallel on second map worker as “backup”, race to complete task