
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #24
Scribe: Jad Bechara May 2, 2018

1 Review of Game Theory

The games we will discuss are two-player games that can be modeled by a game matrix M
with all elements in [0, 1]. Simultaneously, Mindy (row player) chooses a row i and Max
(column player) chooses a column j. From Mindy’s point of view, her loss will be: M(i, j)
(which she is trying to minimize, and which Max is trying to maximize). Choosing a single
row or a single column corresponds to playing deterministically, i.e. pure strategies.

Alternatively, we can allow the players to play in a randomized way (known as mixed
strategies): simultaneously, Mindy chooses a distribution P over rows (the strategy she ends
up playing is i ∼ P) and Max chooses a distribution Q over columns (the strategy he ends
up playing is j ∼ Q). In this case, Mindy’s expected loss (which we sometimes will refer to
simply as her loss) is: ∑

i,j

P (i)M(i, j)Q(j) = P>MQ := M(P,Q) (1)

where P (i) is the probability that Mindy plays strategy i, and Q(j) is the probability that
Max plays strategy j.1

2 Minimax Theorem

Suppose that the game is played sequentially. In other words, Mindy first picks a distribution
P (over the rows), then, knowing P and in order to maximize his expected gain, Max
picks a distribution Q = arg maxQM(P,Q).2 Now, knowing Max will play in this fashion,
Mindy will pick her mixed strategy P to minimize her expected loss, which thus will be:
minP maxQM(P,Q) (where minP is over all possible mixed row strategies, and maxQ is over
all possible mixed column strategies). Similarly, if Max plays first, then Mindy’s expected
loss is : maxQ minP M(P,Q). As we have seen when studying Support Vector Machines, in
general, the second player is always at an advantage, i.e.

max
Q

min
P
M(P,Q) ≤ min

P
max
Q

M(P,Q) (2)

However, in this case, John von Neumann’s Minimax theorem shows that for two player
zero-sum games (when one player’s loss is the other player’s gain):

max
Q

min
P
M(P,Q) = min

P
max
Q

M(P,Q) := v (3)

1Note that we denote by M(i, Q) Mindy’s loss for playing some row i when Max plays some distribution
over columns Q, and vice-versa for M(P, j).

2For a fixed distribution P , this function is linear in Q, so the optimal strategy is a pure strategy:
maxQ M(P,Q) = maxj M(P, j).

where v denotes the value of the game. In what follows, we will prove this theorem using
techniques from online learning.

The Minimax theorem implies that ∃ P ∗ : ∀ Q, M(P ∗, Q) ≤ v (regardless of what Max
plays, Mindy can ensure a loss of at most v) and that ∃ Q∗ : ∀ P, M(P,Q∗) ≥ v (regardless
of what Mindy plays, Max can ensure a gain of at least v). In this case, we say that P ∗ is
a minmax strategy and Q∗ a maxmin strategy.3

In classical game theory, having knowledge of M , one can compute P ∗ and Q∗ immedi-
ately (using linear programming). However, things are not always so simple. In some cases,
we might not have knowledge of M , in others, M could be very large, and more notably,
(P ∗, Q∗) assumes both players are “rational” (optimal and adversarial), which is not always
the case. Thus, a natural extension of the situation that will allow for online learning, is to
allow the game to be played repeatedly. Consider the following online algorithm:45

Algorithm 1 Learning Protocol

INPUT: Game Matrix M , Number of rows n, Number of iterations T .

for t = 1, ..., T do
Learner (Mindy) chooses Pt
Environment (Max) chooses Qt (knowing Pt)
Learner suffers loss M(Pt, Qt)
Learner observes M(i, Qt) ∀ i

OUTCOME: Learner’s total loss is
∑T

t=1M(Pt, Qt).

We want to compare this total loss to the loss the learner would have gotten by fixing an
optimal strategy P for all T rounds. In other words, we want to prove:

1

T

T∑
t=1

M(Pt, Qt) ≤ min
P

1

T

T∑
t=1

M(P,Qt) + small regret. (4)

Note that the first term on the right-hand side of the inequality is at most v, the value of
the game (it can be smaller when the other player is sub-optimal).

2.1 Multiplicative Updates

Since the above looks like an online learning problem, we will construct an algorithm similar
to the Weighted Majority algorithm (i.e. with multiplicative weights). Knowing that we
need to compute Pt on every update, consider the following update rules:

Algorithm 2 Multiplicative Weights (MW)

∀ i : P1(i) = 1
n

∀ i : Pt+1(i) = Pt(i)·βM(i,Qt)

Normalization for some fixed β ∈ [0, 1)

This algorithm is called “Multiplicative Weights” or “MW”. Notice that the greater the
loss the learner would have suffered if row i had been played, the smaller the probability of
choosing that row gets.

3Also, (P ∗, Q∗) forms a Nash equilibrium.
4Everything is viewed from Mindy’s perspective.
5On each iteration, the learner observes the loss they would have gotten for every row chosen.

2

Theorem 1. If we set β = 1

1+
√

2 lnn
T

, then:

1

T

T∑
t=1

M(Pt, Qt) ≤ min
P

1

T

T∑
t=1

M(P,Qt) + ∆T (5)

where ∆T = O
(√

lnn
T

)
, so that the regret goes to 0 as T →∞.

Proof. The proof involves an analysis similar to the one done for the Weighted Majority
algorithm (potential function argument) and will be omitted.

2.2 Minimax Theorem Proof

We will next prove the Minimax Theorem using the Multiplicative Weights algorithm and
its anaylsis. Suppose that Mindy and Max behave according to the following procedure:

Algorithm 3

for t = 1, ..., T do
Mindy picks Pt using Multiplicative Weights (Algorithm 2)
Max picks Qt = arg maxQM(Pt, Q)

Define P̄ = 1
T

∑T
t=1 Pt, Q̄ = 1

T

∑T
t=1Qt. Now, note the following chain of inequalities:

min
P

max
Q

P>MQ ≤ max
Q

P̄>MQ (6)

= max
Q

1

T

T∑
t=1

P>t MQ (7)

≤ 1

T

T∑
t=1

max
Q

P>t MQ (8)

=
1

T

T∑
t=1

P>t MQt (9)

≤ min
P

1

T

T∑
t=1

P>MQt + ∆T (10)

= min
P
P>MQ̄+ ∆T (11)

≤ max
Q

min
P
P>MQ+ ∆T (12)

where (6) is due to picking a particular value of P , (7) is by definition of P̄ , (8) is due
to convexity (also, taking the maximum term-by-term can only give a greater or equal
quantity), (9) is by definition of Qt, (10) is by the MW algorithm and Theorem 1, (11) is

by definition of Q̄, and (12) is by definition of max. Since ∆T = O
(√

lnn
T

)
, taking T →∞

proves the result.

3

Notice that by taking the right-hand term of (6) and the inequality in (12) we also get:
maxQ P̄

>MQ ≤ maxQ minP P
>MQ+ ∆T . Or, in other words:

max
Q

M(P̄ , Q) ≤ v + ∆T (13)

This implies that we can approximate the value of the game, v, using Algorithm 3 (i.e. P̄
is an approximate min max strategy).

Let us now observe how Online Learning and Boosting an be seen as special cases of
the above result.

3 Relation to Online Learning

Consider the following version of Online Learning:

Algorithm 4

INPUT: Finite hypothesis space H, Finite domain space X , Number of iterations T .

for t = 1, ..., T do
Get xt ∈ X
Predict ŷt ∈ {0, 1}
Observe true label c(xt) (mistake if ŷt 6= c(xt))

We want to show: #(mistakes) ≤ minh∈H#(mistakes by h) + small regret. In order to do
so, let’s construct a game matrix M , where the rows are indexed by h ∈ H, and the columns
are indexed by x ∈ X . Define M(h, x) = 1[h(x) 6= c(x)].

Now, run the Multiplicative Weights algorithm on the matrix M . On each round t, MW
will use the distribution Pt to pick a hypothesis h ∼ Pt and predict ŷt = h(xt). Then, let
Qt be concentrated on xt (i.e. probability 1 on column xt and 0 everywhere else). From
the bound on the MW algorithm, we get:

T∑
t=1

M(Pt, xt) ≤ min
h∈H

T∑
t=1

M(h, xt) +O
(√

T ln |H|
)

(14)

Note that it is enough to compute the right-hand side over all pure strategies only. Also,
notice that minh∈H

∑T
t=1M(h, xt) is the number of mistakes made by the best hypothesis

in the class, and that:

T∑
t=1

M(Pt, xt) =
T∑
t=1

E
h∼Pt

[1[h(xt) 6= c(xt)]] =
T∑
t=1

Pr
ŷt

[ŷt 6= c(xt)] = E[#(mistakes)]. (15)

Plugging this into (13) yields the desired result.

4 Relation to Boosting

Now, let’s look at a simplified version of Boosting (with known edge γ > 0):

4

Algorithm 5

INPUT: Weak hypothesis space H, Training set X , Number of iterations T .

for t = 1, ..., T do
Booster chooses distribution Dt over X
Weak learner chooses ht ∈ H such that Prx∼Dt [ht(x) 6= c(x)] ≤ 1

2 − γ

OUTPUT: H = MAJORITY(h1, ..., ht).

Since the distributions Dt are over the examples (not hypotheses), using the matrix M
defined as in the previous analysis, construct M ′ = 1−M>, so that

M ′(x, h) = 1[h(x) = c(x)].

In fact, M and M ′ actually represent exactly the same game but with the roles of the
row and column players reversed: transposing switches the examples with the hypotheses;
negating switches min and max; and adding 1 to every entry simply translates the entries
to [0, 1] while having no impact on the game.

Now, run the Multiplicative Weights algorithm on the matrix M ′. On each round t,
MW will find a distribution Pt on the rows of M ′. So, let Dt = Pt, get ht ∈ H and let Qt
be concentrated on ht. From the bound on the MW algorithm, we get:

1

T

T∑
t=1

M ′(Pt, ht) ≤ min
x∈X

1

T

T∑
t=1

M ′(x, ht) + ∆T (16)

Note that M ′(Pt, ht) is the probability of choosing a row (according to Dt = Pt) that is
correctly classified by ht, so M ′(Pt, ht) ≥ 1

2 + γ. Combining this with the above, and
rearranging terms yields:

∀ x ∈ X :
1

T

T∑
t=1

M ′(x, ht) ≥
1

2
+ γ −∆T >

1

2
(17)

since ∆T goes to 0 as T → ∞. Notice that 1
T

∑T
t=1M

′(x, ht) is the fraction of hypotheses
that are correct on example x, so when we take the majority vote H, we immediately get
that H(x) = c(x). Therefore, the training error goes to 0.

Finally, the two previous analyses show that (versions of) the Weighted Majority al-
gorithm and AdaBoost can both be viewed as special cases of a more general algorithm
for playing repeated games. Furthermore, the games that are used for online learning and
boosting are in fact duals of each other, in the sense that they represent the exact same
game, but with the row and column players reversed.

5

