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1 Recap

In the last lecture, we saw how to invest in stocks using online learning.

1.1 Setting

• There are N stocks.

• We let wt(i) denote the fraction of wealth in stock i at the start of day t. Hence, we
have

N∑
i=1

wt(i) = 1

• We let pt(i) denote the Price relative, or price change in stock i.

pt(i) =
price of stock i at end of day t

price of stock i at beginning of day t

• We let St be the wealth at the start of day t.

• We have S1 = 1.

Last time, we saw that

St+1 = St(wt · pt)

Unrolling the recurrence gives us

ST =
T∏
t=1

(wt · pt)

Note that maximising ST =
∏T

t=1(wt · pt) is equivalent to minimizing
∑T

t=1− ln(wt · pt).
Hence, we can formulate our problem as an online learning problem with the log-loss at

step t given by − ln(wt ·pt). We wish to minimise this loss, and are faced with the following
online learning problem:

for t = 1 . . . T

• Choose wt

• Observe pt

• Suffer loss = − ln(wt · pt)

As discussed in the previous lecture, we would like to perform this task without any
statistical assumptions. We will proceed to do so using an algorithm derived from the
Bayes algorithm, and analyse the regret bound with respect to the best stock in hindsight.



2 Using Bayes algorithm to do almost as well as the best
stock

We will apply Bayes algorithm to obtain an investment strategy that does almost as well as
the best stock. We first review Bayes algorithm. Note that in the description that follows,
we are free to choose X , the xt’s and the p̃t,i’s, since they are not part of the problem
setting.

2.1 Algorithm

for t = 1 . . . T

• Expert i produces distribution p̃t,i over X

• Learner maintains weights w̃t,i, and predicts q̃t, where q̃t(x) =
∑

i w̃t,ip̃t,i(x)

• Observe xt ∈ X

• Loss suffered is − ln q̃t(xt)

By Bayes algorithm regret bounds, we have

−
T∑
t=1

ln q̃t(xt) ≤ min
i

T∑
t=1

− ln p̃t,i(xt) + lnN

We leverage these bounds by defining X , xt’s and p̃t(i)’s appropriately. Suppose we know
ahead of time that

c ≥ max
t,i

pt(i)

This means that each stock grows by a factor of at most c in each round. It is quite
reasonable to assume that such a c must exist. We now choose X . Let X = {0, 1}.

Now, we define the predictions of experts as

p̃t,i(1) =
pt(i)

c
≤ 1

p̃t,i(0) = 1− pt(i)

c

Since our regret bounds are independent of statistical assumptions, we can choose the
xt’s as we wish. We choose xt = 1 ∀t. The Bayes algorithm computes w̃t,i for each round,
and we will use that to decide the proportions used in the stocks. In other words, we let
∀ i wt(i) = w̃t,i be the fraction of wealth invested in stock i.

Plugging in the definitons, we have that

q̃t(xt) = q̃t(1)

=
∑
i

w̃t,ip̃t,i(1)

=
∑
i

wt(i)
pt(i)

c

=
wt · pt

c
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Having done our calculation, we can check the regret bounds! These are

−
T∑
t=1

ln
(wt · pt

c

)
= −

T∑
t=1

ln q̃t(xt)

≤ min
i
−

T∑
t=1

ln p̃t,i(xt) + lnN

= min
i
−

T∑
t=1

ln
pt(i)

c
+ lnN

Hence, we have

−
T∑
t=1

lnwt · pt + T ln c ≤ min
i
−

T∑
t=1

ln pt(i) + T ln c+ lnN

=⇒ −
T∑
t=1

lnwt · pt ≤ min
i
−

T∑
t=1

ln pt(i) + lnN

=⇒ − ln(wealth of learner) ≤ − ln(wealth of best stock) + lnN

=⇒ ln(wealth of learner) ≥ ln(wealth of best stock)− lnN

=⇒ wealth of learner ≥ wealth of best stock

N

=⇒ (wealth of learner)
1
T︸ ︷︷ ︸

Average daily rate of growth of learner

≥
(

1

N

) 1
T

︸ ︷︷ ︸
Goes to 1 as T→∞

× (wealth of best stock)
1
T︸ ︷︷ ︸

Average daily rate of growth of best stock

Since the multiplicative factor
(

1
N

) 1
T converges to 1 as T → ∞, we have that in the

limit, the learner achieves the rate of growth achieved by the best stock!
It may seem that we have done something complicated to achieve these bounds. How-

ever, if we unravel the strategy we just derived, it is essentially the following

“Leave all money in N stocks, divided evenly, on day 1, and do not buy or sell anything
after that.”

This strategy is also called “Buy and Hold”. Note that our analysis for this strategy
can also been seen rather trivially: since 1

N of our wealth was invested in the best stock,
our final wealth will be at least 1

N of the wealth attained by that best stock, even if all the
other money we invested in other stocks is lost.

What are the other strategies we could use? One approach is to try to do as well as the
best shifting sequence of experts. However, we consider now a different approach.
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3 Constant Rebalanced Portfolios: CRP

A Constant Rebalanced Portfolio, or CRP, is a portfolio where the following strategy is
used:

“Decide proportions for rebalancing ahead of time. Then, rebalance portfolios at the end
of each day according to the proportion decided.”

For instance, given 3 stocks, we might decide ahead of time to put 50% of our wealth in
stock 1, and 25% in each of stocks 2 and 3. Then at the end of each period, after each of
the stocks have gone up or down, we rebalance our holdings according to these proportions.
So if we begin with $100, we put $50 in stock 1 and $25 each in stocks 2 and 3 on day 1.
Say stock 1 halves in value, 2 triples, and stock 3 quadruples, giving us a total wealth of
$25 + $75 + $100 = $200 at the end of day 1. Then, at the start of day 2, we rebalance the
portfolio according to the initial ratio, and assign a wealth of $100 to stock 1, and $50 each
to stocks 2 and 3 before the beginning of day 2. In this manner, the rebalancing strategy
is implemented at the end of each day.

We will now lead up to an investment strategy that does almost as well as the best CRP,
rather than just the best stock.

3.1 Example

Imagine that we have two stocks. One does nothing, staying flat throughout. The other
alternates between doubling and halving at the end of alternate days. We now show how
implementing a CRP can be highly valuable, even when the underlying stocks are clearly
not increasing in value.

Recall that the price relative is the ratio of the stock price at the end of the day to that
at the beginning. Note that the first stock remains priced at a constant, and has a price
relative of 1. On the other hand, the second stock alternately halves and doubles, and has
its price relative oscillate between 1

2 and 2.
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Table 1: Price

Stock 1 price Stock 2 price

Start of day 1 1 1
Start of day 2 1 1

2
Start of day 3 1 1
Start of day 4 1 1

2
Start of day 5 1 1

...
...

...
Start of day N 1 1

Table 2: Price relative

Stock 1 price relative Stock 2 price relative

Day 1 1 1
2

Day 2 1 2
Day 3 1 1

2
Day 4 1 2
Day 5 1 1

2
...

...
...

Day N 1 1
2

3.2 Analysing Uniform CRP

Recall the Buy and Hold strategy. With this strategy, we do not make any money at the
end for the stocks specified above: we either lose money or stay at the same amount of
wealth, depending on the day.

Consider using the uniform CRP strategy, which rebalances wealth equally among the
N stocks in the portfolio at the start of each day. Let us analyse the wealth St at the end
of each day t. We start off with a total wealth of $1, uniformly balanced, so that $1

2 is
invested in each stock.

1. S1 = 1 since both stocks do not change in value during day 1.

2. At the end of day 2, stock 1 does not change in value, while stock 2 halves in value.
Hence, we have overall wealth

S2 = S1

(
1

2
· 1 +

1

2
· 1

2

)
= S1

3

4

3. At the start of day 3, we rebalance the total wealth S2 across both stocks. Hence,
we invest S2

1
2 in each stock. At the end of this day, stock 1 remains unchanged while

stock 2 doubles in value. Hence, at the end of day 3, we have overall wealth

5



S3 = S2

(
1

2
· 1 +

1

2
· 2
)

= S2
3

2

= S1
9

8

Since the price-relative for stock 2 oscillates with a period of 2, and that of stock 1 is always
1, we have

St+2 = St
9

8

Hence, our wealth increases by a constant factor every two rounds, and this is therefore
clearly a better strategy than Buy and Hold for this setting! We now move beyond the
uniform distribution and consider CRPs for general distributions.

4 General CRP

We can define a general CRP by the policy

b = 〈b1, . . . , bN 〉

with

bi ≥ 0 ∀i,
N∑
i=1

bi = 1

such that b defines how we want to redistribute stocks at the start of each round. That is
to say,

∀t wt = b

Which b should we use? We would like to learn the optimal CRP, or do almost as well as
it does. To solve this problem, we use the Universal Portfolio algorithm.

5 Universal Portfolio

The basic idea is to do as well as a whole “universe” of strategies. We would like to do
almost as well as the best CRP. To do this, we will implement Buy and Hold over the space
of all CRPs, and divide money across all CRPs infinitesimally. The resulting algorithm is
called the Universal Portfolio algorithm. This is one example of using a continuous space
for what is a discrete problem over N stocks. It is also an example of applying an algorithm
defined for a finite set of experts and extending it to a continuous (uncountably infinite)
space of experts.

Note that each CRP corresponds to a distribution on the stocks. Consider the proba-
blilty simplex ∆, which is defined as

∆ =

{
b ∈ RN : bi ≥ 0 ∀i,

N∑
=1

bi = 1

}

6



Note that this set is N − 1 dimensional, since it lies in RN and has one equality constraint.

x
y

z

n

b

n1(0, 0, 1)

n2

(1, 0, 0)
n3

(0, 1, 0)

For example, the simplex in R3 is the green triangle shown above.
Consider any distribution b over all the stocks, which lies in ∆. For this one CRP, we

want to calculate its wealth. Let us assume the initial (infinitesimal) wealth assigned to b
is dµ(b). Then, we have the wealth invested in b at the beginning of the tth day as

t−1∏
s=1

(b · ps)dµ(b)

Hence, we have that the total wealth at the start of day t is∫
b∈∆

t−1∏
s=1

(b · ps)dµ(b)

For each CRP b, the fraction of wealth in stock i is bi. Hence, the total wealth invested in
stock i at the start of day t is ∫

b∈∆
bi

t−1∏
s=1

(b · ps)dµ(b)

We would like to know how much to invest in stock i according to the universal portfolio’s
strategy. Hence, for this algorithm, we set

wt(i) =

∫
b∈∆ bi

∏t−1
s=1(b · ps)dµ(b)∫

b∈∆

∏t−1
s=1(b · ps)dµ(b)

Hence, given wt(i), we can implement Buy and Hold on the N stocks to implement the
universal portfolio selection algorithm. In practice, the integrals can be hard to compute,
and discretised versions are used.
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5.1 Regret bounds

We now look at a bound that tells us that the rate of growth of the universal portfolio
algorithm will be almost as good as the rate of the best CRP.

Theorem 1. At the end of T rounds,

(Wealth of Universal Portfolio algorithm) ≥ (Wealth of best CRP) ×
(

1
T+1

)N−1

Further, it can be shown that this regret bound is almost the best possible in a certain
sense. We prove a slightly weaker version of this theorem, namely that

(Wealth of Universal Portfolio algorithm) ≥ (Wealth of best CRP) × 1
e(T+1)N−1

Proof. Let the best CRP be b∗. We will analyse a subset of ∆ containing b∗, called a
neighbourhood of b∗, that is reasonably large. We will then argue that all CRPs close to b∗

achieve wealth approximately equal to that achieved by b∗. Since b∗ is the best CRP, and
the neighbourhood is not too small, we will be able to show that the total wealth generated
by the neighbourhood is large.

We define this neighbourhood to be all CRPs which are like a slightly scaled-down
version of b∗ + another nearby CRP. Formally, for a fixed α ∈ [0, 1] (that we will define
later), we define

η(b∗) = {(1− α)b∗ + αz | z ∈ ∆}

x
y

z

n

b

n

(1− α)b

n1(0, 0, 1)

n2

(1, 0, 0)
n3

(0, 1, 0)

In the figure, η(b∗) is the red triangle centered at (1− α)b∗.
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Note that for any b ∈ η(b∗) we have

b = (1− α)b∗ + αz

=⇒ b · pt = (1− α)b∗.pt + α z.pt︸︷︷︸
≥0

(Taking dot product of both sides with pt)

=⇒ b · pt ≥ (1− α)b∗ · pt

(since z,pt ≥ 0)

=⇒
T∏
t=1

b · pt ≥ (1− α)T
T∏
t=1

b∗ · pt

(Taking the product across all T rounds)

=⇒ Wealth for CRP b ≥ (1− α)T (Wealth for CRP b∗)

We now check the size of η(b∗)

Vol(η(b∗)) = Vol({(1− α)b∗ + αz|z ∈ ∆})
= Vol({αz|z ∈ ∆})

(Since translating the origin does not change the volume)

= αN−1Vol(∆)

(Since ∆ is N − 1 dimensional, and scaling each

length by α therefore scales the total volume by αN−1)

Hence, we have that αN−1 fraction of the portfolio performs at least (1−α)T as well as
the best portfolio. Since the total wealth of the universal portfolio algorithm is at least as
much as this portion, we have

(Wealth of Universal Portfolio algorithm) ≥ αN−1(1− α)T (Wealth of best CRP)

Plugging in α = 1
T+1 ∈ [0, 1] gives us the bound

(Wealth of Universal Portfolio algorithm) ≥
(

1
T+1

)N−1 (
1− 1

T+1

)T
(Wealth of best CRP)

If we can show that (
1− 1

T + 1

)T

≥ 1

e

this will give us

(Wealth of Universal Portfolio algorithm) ≥ (Wealth of best CRP) × 1
e(T+1)N−1

as required. Rearranging, this is equivalent to showing(
1

1− 1
T+1

)T

≤ e

Simplifying the left hand side, this is the same as(
1 +

1

T

)T

≤ e
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which is true since 1 + x ≤ ex for all x.

We now move on to an introduction to the next topic, game theory and its connections to
machine learning.

6 Introduction to Game Theory

Games are models of interactions between agents. Since a lot of machine learning problems
involve agents “learning” from repeated interactions with the environment, it is very natural
for connections to exist between machine learning and the theory of games. But what is a
game?

We first look at a simple model called a matrix game. Here, we have a row player,
Mindy, and a column player Max. Simultaneously, Mindy, the row player, chooses a row
i, and Max, the column player, chooses a column j. We have a matrix M such that the
loss for Mindy is M(i, j), which is the same as the gain or payoff to Max. For example, we
consider the rock-paper-scissors game, with loss 0 for a win, 1 for a loss, and 1

2 for a tie.
The loss matrix M for Mindy is then

Max

R P S

R 1
2 1 0

Mindy P 0 1
2 1

S 1 0 1
2

Games of this type are called two-person, zero-sum games since we assume that Max’s payoff
is always equal to Mindy’s loss. It can be argued that even larger, ordinary, zero-sum games
can be put in this form.

In the next lecture, we will analyse two-player zero-sum games and consider an online
learning algorithm for a player to achieve loss close to that of the best strategy over multiple
rounds.
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