
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #22
Scribe: Qasim Nadeem April 25, 2018

1 Introduction and Recap

In the previous lecture, we introduced an algorithm to minimize log-loss in an on-line model.
We called it the Bayes algorithm because it uses Bayes rule.

Summary of the algorithm:

• # experts: N

• π is our prior over the experts. πi ≥ 0, ∀i and
∑

i πi = 1. If we have a clue as to
which expert is going to perform the best, we can distribute the prior intelligently,
else we set it uniformly.

• w1,i = πi, for all i = 1, . . . , N

• For t = 1, . . . , T

– expert i predicts distribution pt,i over X
– learner then chooses the distribution qt:

qt(x) =
N∑
i=1

wt,ipt,i(x)

– we observe xt ∈ X
– the loss incurred in the round is − ln(qt(xt))

– learner updates ∀i : wt+1,i =
wt,ipt,i(xt)
norm

We then proved the following inequality, which intuitively says that the log-loss of the
Bayes algorithm is bounded by the log-loss of the best expert plus a regret term based on
the prior:

−
∑
t

ln(qt(xt)) ≤ min
i

[
−
∑
t

ln(pt,i(xt)− ln(πi)

]
Note that if πi = 1/N for all i, then we simply get a regret of ln(N).

2 Tracking the shifting best expert

Now we tackle a more challenging setting where across all the time steps t = 1, . . . , T , the
best expert can change over time and we want to track the best shifting expert. As an
example, maybe for the interval t = 1, . . . , t0, expert e0 is the best, then for the interval
t = (t0 + 1), . . . , t1, expert e1 is the best, and so on. We let k be the the number of switches
of best experts over the entire time sequence.

2.1 First attempt: Naively apply Bayes algorithm

We have N base experts that are given to us. We can imagine creating several meta-experts,
each of which tracks a particular k switching of best experts in the time sequence. We can
then directly apply the Bayes Algorithm using the meta-experts as our set of experts, instead
of the base experts. To get a regret bound, we need to count the number of meta-experts.

A total of k switches implies k + 1 blocks: so we have a choice of at most T k ways to
place switches. And we have a choice of N experts as the best one for each block. And so,
we get the bound:

meta-experts = M ≤ Nk+1T k

Now simply apply and analyze Bayes algorithm with a uniform prior, πi = 1
M ∀i, and

the M meta-experts. And we get the regret bound:

ln(M) ≤ (k + 1) · ln(N) + k · ln(T)

= ln(N) + k(ln(N) + ln(T))

where ln(N) is regret with just base experts, and our regret increases at a cost of ln(N) +
ln(T) per switch.

We are happy with the regret. However, if k is large, there are exponentially many
meta-experts to maintain, which is computationally infeasible. We look at an alternative
technique, which has similar regret bound but is computationally efficient. Note that above
we had one meta-expert for each switching sequence with at most k switches. Now instead,
we will play with the prior π. Also, in this new construction, we will track one meta-expert
for every switching sequence, not just sequences with at most k switches.

2.2 Second attempt: Make computationally efficient

Let a meta-expert be defined by a vector of T base experts:

e = 〈e1, e2, ..., eT 〉, et ∈ {1, . . . , N}

The vector indicates the base expert et that this meta-expert predicts with at time step
t. Intuitively, we are going to give low prior to meta-experts which switch their chosen
expert often, and high prior to ones that do not. So as illustration, [1, 1, 1, 7, 7, 7, 7, 2, 2] will
have a higher prior than [1, 2, 3, 4, 4, 5, 1, 7, 2].

We will now describe a process of generating a random meta-expert. And the prior
we will give each meta-expert will be the probability that our described random process
generates that meta-expert. More formally:

πi = π(e) = Pr [e? = e]

Now we specify the following meta-expert generating process (denote the meta-expert
being generated as e?):

(i) Pick e?1 uniformly: Pr [e?1 = i] = 1
N

2

(ii) Intuitively, we want probability of switching to be low. Thus, with probability (1−α)
we do not switch (we’ll pick α later), and we distribute remaining α probability
uniformly over generation of all other experts:

Pr
[
e?t+1|e?t

]
=

{
1− α if e?t+1 = e?t
α

N−1 otherwise

What can we say about the regret of any particular meta-expert with exactly k switches
generated by the above process? Well, the regret term is contributed to the bound by the
prior. So, let’s look at the prior we associate to such a meta-expert:

− ln(π(e)) = − ln

[
1

N
(1− α)T−k−1

(
α

N − 1

)k]

The above directly follows from the way a meta-expert is generated. There is 1
N probability

of generating e1,
α

N−1 probability of each of the k switches, and (1− α) probability of each
of the remaining T − k − 1 non-switches. Multiplying these gives us the above.

Choosing α = k
T−1 , and plugging in above gives us

= ln(N) + k · ln
[

(N − 1)(T − 1)

k

]
− (T − k − 1) · ln

[
1− k

T − 1

]
Note that the third term above: (T −k− 1) · ln

[
1− k

T−1

]
≈ k · (1− k

T−1). Plugging this

in the above expression will give us roughly the same regret bound as what we got from our
earlier construction in section 2.1:

≈ ln(N) + k · [ln(N) + ln(T)]

2.3 Deriving the Weight-Share Algorithm

We now derive the algorithm that will allow us to achieve the above, without explicitly
maintaining the exponential in k many meta-experts. We will reuse most of the notation
we used in the previous lecture for the analysis of Bayes algorithm.

Some helpful notation and algebra:

• Recall that Pr [e? = e] = π(e)

• Then, Pr
[
xt |xt−11 , e? = e

]
= prediction of xt of the meta-expert e at time t
= prediction of base expert et on xt

• And so equivalently,
Pr
[
xt |xt−11 , e?t = i

]
= pi(xt |xt−11) (1)

We can now derive how the weight share algorithm can compute each of the requisite
terms.

Recall that in the Bayes algorithm, we defined

q(xt |xt−11) = Pr
[
xt |xt−11

]
3

We use marginalization on the above to get:

=
N∑
i=1

Pr
[
e?t = i |xt−11

]
· Pr

[
xt | e?t = i, xt−11

]
=
∑
i

vt,i · pi(xt |xt−11) (2)

Note that we have simply renamed the first term in the sum above to vt,i, and the second
term is simplified using (1) above. The question to address now is how we should compute
each of the vt,i terms.

At time step 1,

v1,i = Pr [e?1 = i |nothing] = Pr [e?1 = i] =
1

N

Generally,

vt+1,i = Pr
[
e?t+1 = i |xt1

]
=

N∑
j=1

Pr
[
e?t = j |xt1

]
· Pr

[
e?t+1 = i | e?t = j, xt1

]
Consider the second term in the above sum: The event e?t+1 = i is conditionally independent
of xt1 given e?t = j. Thus, the second term is simply (1− α) if i = j and α

N−1 otherwise.

Consider the first term in the sum: Pr
[
e?t = j |xt1

]
. This is equal to = Pr

[
e?t = j |xt, xt−11

]
Then using Bayes rule, we get:

=
Pr
[
xt | e?t = j, xt−11

]
· Pr

[
e?t = j |xt−11

]
Pr [xt |xt1]

The denominator is exactly equal to q(xt |xt−11). The first term in the numerator is ex-
actly pj(xt |xt−11), and the second term in the numerator is exactly vt,j . We can now put
everything together. Our learner’s prediction at time step t is computed as:

q(xt |xt−11) =

N∑
i=1

vt,i · pi(xt |xt−11) (3)

We get the following update rule for our learner.

∀i : vt+1,i =

N∑
j=1

vt,j · pj(xt |xt−11)

q(xt |xt−11)
·

{
1− α if i = j
α

N−1 else

Let cj be the term cj =
vt,j ·pj(xt |xt−1

1)

q(xt |xt−1
1)

. Then, the update rule can be rewritten and

simplified as:

vt+1,i =

N∑
j=1

cj ·

{
1− α if i = j
α

N−1 else

=
N∑
j=1

cj ·
[

α

N − 1
+

(
1− α− α

N − 1

)
1{i = j}

]

=
α

N − 1

N∑
j=1

cj +

(
1− α− α

N − 1

)
· ci

4

Observe that
∑N

j=1 cj = 1; this can be seen by noticing what q(xt |xt−11) equates to in (3).
Thus,

vt+1,i =
α

N − 1
+

(
1− α− α

N − 1

)
ci

Thus, we have a constant-time update rule for each vt+1,i. So, computation time per
time step to update the N weights is O(N). Notice that this is exactly the same as the run
time of the Bayes algorithm, and there is no dependence on k. And so, we have arrived at
a computationally efficient algorithm. Note that we do assume that k and T are known to
us beforehand, which allows us to set α = k

T−1 .

3 Setup for next lecture: Managing an investment portfolio

We will first define a simple mathematical framework modeling a market of investment
options. And then we will look at some investment strategies. Let’s assume the following
setup. We have a total of N investment options (also called stocks below). We index them
with i. We make investment decisions on a fixed regular schedule; let’s say once a day. We
need to strategically decide how to divide up our entire wealth between the N stocks, at
the beginning of each day. Without loss of generality, assume we start with $1 of wealth.

On day t, the price relative or price change in stock i is denoted:

pt(i) =
price of stock i at end of day t

price of stock i at beginning of day t

We also define St to be our total wealth at the start of day t; so S1 = 1. The investment
problem for us is to pick the investment allocation amongst the stocks on each day t. This
allocation is denoted as the vector wt ∈ RN where wt(i) ≥ 0 and

∑
iwt(i) = 1. In words,

wt(i) is the fraction of wealth in stock i at the start of day t. The constraint that the wt(i)
sums to 1 is simply saying that the entire wealth is invested at all times. This is fine since
we can model putting money aside with a dummy stock that does not move.

By definition then, St · wt(i) is the total wealth in stock i at the start of day t. And
furthermore, based on how stock i changes in price we get St ·wt(i) ·pt(i) is the total wealth
in stock i at end of day t. Then, the total wealth on day t+ 1, dependent on the allocated
wealth and price changes from day t is given by

St+1 =

N∑
i=1

St · wt(i) · pt(i) = St(wt · pt)

. And thus, wt · pt is our wealth increase from time step t to (t+ 1).

We can then simply unroll the recurrence to get: ST+1 =
∏T
t=1(wt · pt). As an in-

vestor, we want to maximize the term ST+1, our total wealth after T steps. This goal can
equivalently be achieved as:

max
T∏
t=1

(wt · pt) ≡ max
T∑
t=1

ln(wt · pt) ≡ min
T∑
t=1

− ln(wt · pt) (4)

The above is now an on-line learning problem, with a log-loss of − ln(wt · pt) at each
time step t, and we want to minimize the sum of log-loss over all time steps. We can write
it as:

5

For t = 1, . . . , T

– learner chooses investment allocation wt

– world/adversary chooses price changes of stocks pt

– we experience loss = − ln(wt · pt)

Goal: We want to analyze portfolio selection without statistical assumptions about
the underlying market, so it is quite different from investment ideas you may have come
across which rely on assumptions about the nature of the market. Next time, we shall
see an algorithm, with similarities to Bayes algorithm, that has a regret style bound on
how well it does compared to the best stock, and how that translates to wealth for the
investor/learner.

6

