
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 21
Scribe: Anais Ta April 23, 2017

1 Introduction

1.1 Recap from last time

Last time, we started looking at online log-loss, which is a very important loss function.
The setting was the following one:

• N = # experts

• For t = 1, . . . , T , expert i predicts pt,i (distribution on X)

• The master combines all predictions into distribution qt

• We observe xt ∈ X

• The loss is given by : Loss = − ln[qt(xt)]

We want:

−
T∑
t=1

ln[qt(xt)] ≤ min
i
−

T∑
t=1

ln[pt,i(xt)] + small

That is, we want the cumulative loss to be bounded by the cumulative loss of the best
expert in hindsight, plus a small term.

1.2 Universal Compression

A very different motivation for online learning with log-loss comes from coding theory:
Suppose Alice wants to send Bob one message from a set X . For instance, X might be

the set of English letters : X = {“a”, “b”, ...}. Let p(x) be the probability of choosing x in
X . To send a message of that kind, we can use − lg[p(x)] bits.

Now suppose Alice wants to send an entire text or sequence of messages. Suppose so
far she has sent “I am goin ”. If we were to ignore context, we’d predict an “e” since it
is the most frequent letter in English, whereas with context, we will most probably predict
a “g” . Thus the idea is to figure out a dynamic distribution at time t. That is, we want
to estimate pt(xt), the conditional probability of xt given context xt−1

1 , i.e. all x from 1
to t − 1 are known, and then encode xt using − lg[pt(xt)] bits. In our setting, pt(xt) is a
conditional probability, therefore we need a way to estimate the conditional probabilities.

Suppose we already have coding methods (for instance one for French, one for Ger-
man...). How can we code this message without knowing ahead of time which encoding is
going to be the best? We are looking for an algorithm that will combine all coding methods
in the best fashion. We want to prove the bound on the cumulative log-loss. Let N be the
number of coding methods. The bound mentioned above can be interpreted as following:

T∑
t=1
− lg(qt(xt)) is the number of bits used

T∑
t=1
− lg(pt,i(xt)) is the number of bits used by the ith coding method.

Thus, the bound tells us that the master coding method will be almost as good as the
best of the given coding methods since it will be bounded by the best coding method plus
a small term.

This kind of algorithm is called universal compression.

2 Framework

We will introduce the following notation so that the probability measures p and q look
like conditional probabilities.

• pt,i(xt) = pi(xt|xt−1
1)

• qt(xt) = q(xt|xt−1
1)

The notation xt1 indicates the conditioning on all elements from 1 to t, where xt1 is
the vector xt1 = 〈x1, ..., xt〉. This notation is meant to look like we are conditioning on
everything that has happened so far. In reality, pi(xt|xt−1

1) is a distribution that is given to
us by “black box” predictors, and q(xt|xt−1

1) is the prediction of the algorithm that we are
deriving.

The approach we are going to pursue is to pretend that the data is random, according
to the process described below. However, the results we’ll derive will hold for any sequence
of data, even without the randomness assumption.

* STEP 01 * Choosing a specific expert

• One expert i∗ is chosen uniformly at random, that is, i∗ is a random variable.

• We introduce Pr[i∗ = i] = 1
N which represents the probability of the choice of i∗

according to the random process.

* STEP 02 * Generate a sequence

• Now that we have chosen i∗, we pretend that (x1, ...xT) is a sequence generated by
pi∗. That is, the tth item is generated given the first (t− 1) outcomes, so

Pr[xt|xt−1
1 , i∗ = i] = pi∗(xt|xt−1

1)

• At present, we only need to define q(xt|xt−1
1) in order to define the algorithm. Specif-

ically, we define

q(xt|xt−1
1) = Pr[xt|xt−1

1]

2

• Now let’s compute this quantity:

q[(xt|xt−1
1] =

N∑
i=1

Pr[i∗ = i, xt|xt−1
1] Marginalizing over the experts

=

N∑
i=1

Pr[i∗ = i|xt−1
1]Pr[xt|i∗ = i, xt−1

1] Using P [a, b] = P [a]Pr[b|a]

=
N∑
i=1

wt,iPr[xt|i∗ = i, xt−1
1] By defining wt,i = Pr[i∗ = i|xt−1

1]

In order to specify q, we can work out how wt,i is updated from round to round by
computing the update step by step starting at t = 1.

• Let us compute wt,i:

– At t = 1, w1,i = Pr[i∗ = i] = 1
N

– We can compute wt+1,i inductively as follows :

wt+1,i = Pr[i∗ = i|xt1]
= Pr[i∗ = i|xt−1

1 , xt] By breaking up Pr[i∗ = i|xt1]

=
Pr[i∗ = i|xt−1

1]Pr[xt|i∗ = i, xt−1
1]

Pr[xt|xt−1
1]

Pr[a|b] = Pr[b|a]
Pr[a]

Pr[b]

∝ wt,ipi(xt|xt−1
1) By ignoring the normalization term

We find that, the weight update is proportional to the previous one times a conditional
probability.

3 Bayes Algorithm

The result we proved is called Bayes Algorithm since it uses Bayes’ Rule. Here is a
recap:

• N = # experts

• ∀i ∈ {1, ..., N}, w1,t = 1
N

• for t = 1, . . . , T

– Expert i predicts pt,i distribution on X
– The master combines into distribution qt

– qt(x) =
N∑
i=1

wt,ipt,i(x)

– Observe xt ∈ X
– Loss = − ln[qt(xt)]

– ∀i ∈ {1, ..., N}, wt+1,i =
wt,ipt,i(xt)

Z where Z is the normalization term

3

Our analysis is going to hold for any sequence (x1, x2, ..., xT). We can derive the same
update using multiplicative weights. In the Randomized Weighted Majority Algorithm, the
loss was a zero-one loss. We computed the update rule of the wt,i’s showing that: if there
was a mistake, the weight was multiplied by β. On the contrary, if there was no mistake,
the weight was multiplied by 1, remaining unchanged. The update rule, where loss refers
to the zero-one loss, was:

wt+1,i =
wt,iβ

loss

Z

In our case we have a log loss, so by choosing the right value of β we get back to an
analogous multiplicative weight update:

βloss = β− ln(pt,i(xt)) = pt,i(xt)

β = e−1

4 Analysis

In this section we’ll prove the theorem which gives us a bound on the loss of Bayes’
algorithm.

* STEP 01 * Defining q

We are defining q(xT1) for any sequence xT1 , such that it can be written in the form
below:

Definition 4.1 q(xT1) = q(x1, · · · , xT) = q(x1)q(x2|x1) · · · q(xT |x1, · · · , xT−1)

We can rewrite this as following:

q(xT1) =
T∏
t=1

q(xt|xt−1
1)

=
T∏
t=1

Pr[xt|xt−1
1]

= Pr[x1]Pr[x2|x1] · · ·Pr[xT |xT−1
1]

= Pr[xT1]

This definition implies that q(xT1) is equal to the probability of the sequence xT1 according
to our pretend random process.

Similarly, we can define a probability pi on the xT1 sequences in an analogous way, and
thus it also implies that pi is equal to the probability of the sequence conditioned on i being
the chosen expert i∗.

pi(x
T
1) =

T∏
t=1

pi(xt|xt−1
1)

= Pr[xT1 |i∗ = i]

4

* STEP 02 * Looking at cumulative loss

−
∑
t

ln[qt(xt)] = −
T∑
t=1

ln
[
q(xt|xt−1

1)
]

= − ln

[
T∏
t=1

q(xt|xt−1
1)

]
= − ln

[
q(xT1)

]
We are treating the sequence as if it was generating a probability measure. We can do

the same with each expert i, i ∈ 1, ..., N

−
∑
t

ln [pt,i(xt)] = − ln
[
pi(x

T
1)
]

* STEP 03 * Marginalization

q(xT1) = Pr[xT1]

=
N∑
i=1

Pr[i∗ = i]︸ ︷︷ ︸
uniform probability

Pr[xT1 |i∗ = i]

=
N∑
i=1

1

N
Pr[xT1 |i∗ = i] By replacing Pr[i∗ = i]

=

N∑
i=1

1

N
pi(x

T
1) By definition of pi(x

T
1)

=
1

N

N∑
i=1

pi(x
T
1)

* STEP 04 * Putting everything together

Now we can express log-loss:

5

∀x1, ..., xT ,

−
∑
t

ln[qt(xt)] = − ln[q(xT1)]

= − ln

[
1

N

∑
i

pi(x
T
1)

]

≤ − ln

[
1

N
pi(x

T
1)

]
Because for any i

∑
j

pj(x
T
1) ≥ pi(xT1)

= − ln[pi(x
T
1)] + ln(N) By breaking up the product into a sum

= −
∑
t

ln[pt,i(xt)] + ln(N) By using STEP 02

We have proved the following theorem:

Theorem 1

−
∑
t

ln[qt(xt)] ≤ min
i

{
−
∑
t

ln[pt,i(xt)] + ln(N)

}

This shows that we can bound the regret of the algorithm and it is of magnitude lnN .

We can go back to the the coding theory setting that we presented at the beginning of
the lecture: we could imagine an alternative approach in which Alice first computes which
coding method is best for the particular message she wants to send, then sends the index i of
that coding method, and finally sends the message using coding method i. This would cost
lgN bits to send the index i, plus the number of bits of the best coding method. That is
exactly the same bound she would get if using Bayes algorithm, but with Bayes algorithm,
she can be doing the coding on the fly, rather than first evaluating all coding methods on
the entire message (which might be expensive or unavailable).

In doing our construction, we could have picked the ith expert with probability πi, where
∀i, πi ≥ 0 and

∑
i πi = 1.

We would have gotten the following inequality:

−
∑
t

ln[qt(xt)] ≤ min
i
{−
∑
t

ln pt,i(xt)− ln(πi)}

That would be interesting if you had any information on which expert is going to perform
the best. Indeed, modifying the probability with which we choose our expert is a way to
minimize regret with respect to the best performing expert.

5 Switching Experts

Q. What happens if you have a sequence where one expert is good for a while then
another one is good for another while ?

6

We want an online algorithm that is going to be able to switch from one expert to
another. We are seeking an algorithm that will perform nearly as well as the best switching
sequence of experts. We can relate this idea to that of coding theory, which we saw at the
beginning of the class. If you want to encode a message that uses several languages, for
instance, if a message contains both English and Spanish sentences, you want to use the
English expert for the parts in English and the Spanish one for the parts in Spanish.

Ultimately, we want a bound that’s competitive with the best switching sequence of
experts. One approach is to create meta/super experts which imitate that behaviour (exact
copies of an expert for a while) though leading to a very large family.

Next time, we’ll talk about this gigantic challenge: how do you computationally deal
with this?

7

