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1 Introduction and Recap

In the previous lecture, we introduced a specific instance of learning a probability distribu-
tion. Recall, we wanted to model the probability distribution of butterfly observations as a
function of known features of the area. Formally, we were given:

• A finite domain X with size |X | = N

• A distribution D over X

• An iid sample drawn from the distribution, x1, . . . , xm ∼ D

• A set of features, f1, . . . , fn, where each feature is a function fj : X → R

We define shorthands for the empirical average and the expectation of a feature f as

Ê[f ] =
1

m

m∑
i=1

f(xi) and Eq[f ] = Ex∼q[f(x)].

We will also use the notation ∆X to represent the probability distributions over X .

We explored two approaches for tackling this problem. The first was to find the maxi-
mum entropy distribution such that the expectation of each feature matches its empirical
average. Alternatively, we looked at maximizing likelihood amongst an exponential family
of distributions. In the last class, we saw that these problems were equivalent to each other
through the duality theorem:

Theorem 1 Let
P = {q ∈ ∆X : Eq[fj ] = Ê[fj ] ∀j}

and

Q = {qλ : λ ∈ Rn}, where qλ(x) =
exp

(∑n
j=1 λjfj(x)

)
Zλ

.

The following are equivalent and have unique solution:

q∗ = argmaxq∈P H(q) (1)

q∗ = argmaxq∈Q

m∑
i=1

ln q(xi) (2)

q∗ ∈ P ∩Q (3)

While this gives an interesting characterization of a solution, we still don’t know how
to find it. In this class we have mostly been concerned with learning, but here we will shift
our focus towards optimization and provide an example of one particular approach.



2 Solving the Optimization Problem

To solve this problem, we first need to look at which equivalent notion to optimize. The
maximum liklihood formulation seems like a good choice as it can be written as an uncon-
strained optimization problem. We rewrite this as a loss-minimization problem by negating:

min
λ∈Rn

L(λ) = − 1

m

m∑
i=1

ln qλ(xi)

gλ(x) =

n∑
j=1

λjfj(x) and qλ(x) =
egλ(x)

Zλ

At a very high level, we would like to find an iterative update that converges to a good
parameterization λ. This would be some algorithm of the form:

• Choose λ1

• For t = 1 . . . T

– Compute λt+1 from λt

We would like the loss to be reduced numerically in each round. We also want the loss
to converge to the minimal possible loss so L(λt)→ infλ L(λ).

In order to illustrate a more general technique, we will go through an example of one
way to do this. The way we will approach this optimization problem is to come up with
an approximation of L(λt+1) − L(λt) and exactly minimize this approximation1. At each
point we will have a new approximation to minimize. Before we proceed, we will make some
simplifying assumptions.

2.1 Simplifying Assumptions

A useful assumption that we will make is that, for each x ∈ X , the features lie in the
probability simplex. That is, for each x ∈ X we have

n∑
j=1

fj(x) = 1 and ∀jfj(x) ≥ 0.

This assumption can be made without loss of generality. To see this, we can first
transform the features such that they are all positive. For each feature fj , we can find
cj = minx∈X fj(x) and make the transformation f ′j(x) = fj(x) − cj so the minimum value
for all features will be exactly 0. We note that the probability distributions before and after
this transformation are unchanged as

g′λ(x) =
n∑
j=1

λjf
′
j(x) =

n∑
j=1

λjfj(x) +
n∑
j=1

λjcj = gλ(x) +
n∑
j=1

λjcj

1If we didn’t use an approximation, there would be no point to an iterative algorithm as we would
immediately find ourselves at the global minimum loss.
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Adding a constant to gλ is just a scaling of qλ so the change will be normalized away by
Zt. Now each feature can be restricted to [0, 1/n] by scaling the features by

bj =
1

nmaxx∈X fj(x)
.

Scaling does not change which distributions can be represented. This leaves us with
nonnegative features fj such that

∑n
j=1 fj(x) ≤ 1. We can add a dummy feature f0 where

f0(x) = 1 −
∑n

j=1 fj(x) so the features all sum to 1. We note that this adds a term
λ0(1 −

∑n
j=1 fj(x)) to gλ(x). This does not affect the functions that can be represented

because λ0 is just a constant term and for each j, −λ0fj(x) can be absorbed by the term
λjfj(x).

2.2 Approximating the Change in Loss

We will work towards finding some upper bound on this difference that has a form that can
be minimized directly. We will focus on a particular round t, so for notational convenience,
we write λ for λt, λ

′ for λt+1, and we define the change α using λ′j = λj + αj . We now
define ∆L to be the change in loss:

∆L = L(λ′)− L(λ)

= − 1

m

m∑
i=1

ln qλ′(xi) +
1

m

m∑
i=1

ln qλ(xi) Expanding log-loss

= − 1

m

m∑
i=1

ln

(
egλ′ (xi)

Zλ′

)
+

1

m

m∑
i=1

ln

(
egλ(xi)

Zλ

)
Plugging in definition of qλ

=
1

m

m∑
i=1

(gλ(xi)− gλ′(xi)) + ln
Zλ′

Zλ
Straightforward algebra

We will now handle both of these terms separately. Plugging in the definition of gλ and
rearranging the sums we have

1

m

m∑
i=1

(gλ(xi)− gλ′(xi)) =
1

m

m∑
i=1

n∑
j=1

(λjfj(x)− λ′jfj(x)) Applying definition of g

= − 1

m

m∑
i=1

n∑
j=1

αjfj(x) Rewriting in terms of α

= −
n∑
j=1

αj
1

m

m∑
i=1

fj(x) Rearranging the sums

= −
n∑
j=1

αjÊ[fj ] Using definition of empirical mean

Now we bound
Zλ′

Zλ
.
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Zλ′

Zλ
=

∑
x∈X exp

(
gλ(x) +

∑n
j=1 αjfj(x)

)
Zλ

Expanding Zλ′

=

∑
x∈X exp(gλ(x)) exp

(∑n
j=1 αjfj(x)

)
Zλ

Simple algebra

=
∑
x∈X

qλ(x) exp

( n∑
j=1

αjfj(x)

)
Applying the definition of qλ

We now note that because the exponential function is convex and (f1(x) . . . fj(x)) forms
a probability distribution, we can use Jensen’s inequality which gives us

exp

( n∑
j=1

αjfj(x)

)
≤

n∑
j=1

fj(x)eαj .

Plugging this in and rearranging, we have

Zλ′

Zλ
≤
∑
x∈X

qλ(x)
n∑
j=1

fj(x)eαj

=

n∑
j=1

eαj
∑
x∈X

qλ(x)fj(x) =

n∑
j=1

eαjEqλ [fj ]

Putting everything back together, we have the following bound:

∆L ≤ −
n∑
j=1

αj Ê[fj ]︸ ︷︷ ︸
Êj

+ ln

( n∑
j=1

eαj Eqλ [fj ]︸ ︷︷ ︸
Ej

)

2.3 Minimizing the Approximation

We now have ∆L ≤ B(α) = −
∑n

j=1 αjÊj + ln

(∑n
j=1 e

αjEj

)
. We can minimize this

approximation with calculus

∂B

∂αj
= −Êj +

Eje
αj∑n

j=1Eje
αj

= 0

By the same reasoning as our simplifying assumptions, adding a constant shift to α
does not change B(α), so we can assume α is normalized such that

∑n
j=1Eje

αj = 1. We
end up with

αj = ln

(
Êj
Ej

)
.
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2.4 The Algorithm and Intuition

What we’ve done so far brings us to the final iterative update on the dual variables λ:

λt+1,j = λt,j + ln

(
Ê[fj ]

Eqλt [fj ]

)
.

This has a very simple form and is easy to compute2. Still, it’s not yet clear how this
is going to progress over time. To get some intuition, we can translate this update into the
primal space of distributions by plugging in the definition of qλ. Here if we let pt = qλt , we
end up with the following update:

pt+1(x) ∝ pt(x)

n∏
j=1

(
Ê[fj ]

Ept [fj ]

)fj(x)
If we look at the duality theorem, then we know that we want to reach q∗ ∈ P ∩ Q.

The constraints for P correspond to Ep[fj ] = Ê[fj ] for all j. If these are all satisfied, then

we clearly are at a fixed point. On the other hand, suppose at time t Ept [fj ] < Ê[fj ].

Intuitively, we want Ept+1 [fj ] to be larger. This is encouraged as
Ê[fj ]

Ept [fj ]
> 1. If fj(x) is

big, it’s probability is increased more, resulting in a higher expectation.

2.5 Proving Convergence

While this intuition is nice, we want to be able to prove that pt converges3 to q∗. We will
do this in two parts. First, we will define properties on an approximation function A for the
change in loss that will guarantee convergence. Then, we will prove that the approximation
we have chosen to use satisfies these criteria.

Definition 2 A function defined on the probability simplex, A : ∆X → R is an auxiliary
function if:

1. A is continuous.

2. L(λt+1)− L(λt) ≤ A(pt) ≤ 0.

3. A(p) = 0⇒ p ∈ P.

Claim 3 If an auxiliary function exists for the process λt then pt → q∗.

Proof: The log-loss L(λ) is bounded below by 0 because each term in the sum must be
nonnegative. By property (2) of an auxiliary function, we know that the differences L(λt)
must be monotonically decreasing. Therefore, we know that the differences L(λt+1)−L(λt)
must converge to 0 (and so A(pt) must also converge to 0), otherwise L(λt) would eventually

2As long as N is not gigantic.
3Ideally, we would like this convergence to be fast, but all we will prove here is the distributions must

eventually converge to the solution.

5



decrease below 0.
Now we assume the limit of pt exists4. We want to show that

p = lim
t→∞

pt ∈ P ∩Q

p ∈ Q by definition of the closure of a set as each pt ∈ Q. Now by the continuity of A
(property (1)), we have

A(p) = A( lim
t→∞

pt) = lim
t→∞

A(pt) = 0

Therefore, by property (3), p ∈ P. It follows that p ∈ P ∩Q = q∗ as desired. �

Theorem 4 pt → q∗

Proof: It suffices to show that an auxiliary function A exists. We consider the approxi-
mation we derived with

∆L ≤ A(pt) = −
n∑
j=1

αjÊ[fj ] + ln

( n∑
j=1

eαjEpt [fj ]
)

We first note that when we chose αj = ln

(
Ê[fj ]

Ept [fj ]

)
in the minimization, we enforced

that
∑n

j=1 e
αjEpt [fj ] = 1. As a result, our approximation simplifies to

A(pt) = −
n∑
j=1

αjÊ[fj ] = −
n∑
j=1

Ê[fj ] ln

(
Ê[fj ]

Ept [fj ]

)
.

This is exactly the form of the negated relative entropy function.

By our simplifying assumptions, for each x ∈ X the vector f(x) = (f1(x) . . . fn(x)) is
a probability distribution. Both the vectors of empirical averages Ê[f ] = (Ê[f1] . . . Ê[fn])
and the expectation in respect to pt, Ept [f ] = (Ept [f1] . . .Ept [fn]) are convex combinations of
f(x), so these are also probability vectors. Thus, we can rewrite our approximation function
A as

A(p) = −RE(Ê[f ] ‖ Ep[f ]).

Now the three properties are easy to prove. The relative entropy function is continu-
ous satisfying property (1). It’s nonnegative, so it’s negation is nonpositive, and by our
derivation ∆L ≤ A(pt), so property (2) is satisfied. Finally, relative entropy is 0 only if the
two distributions are the same, so A(p) = RE(Ê[f ] ‖ Ep[f ]) = 0 ⇒ Ê[f ] = Ep[f ]. This says
that the expectations of the features in respect to p match the empirical expectations, or
in other words p ∈ P, so property (3) is satisfied. �

4This assumption isn’t actually necessary. Because the probability simplex is a compact space, we know
that the pts belong to a compact space. Therefore, there must be a convergent subsequence, which must
converge to q∗ using the same proof as when the limit exists. Since the sequence can only have a single limit
point (by the uniqueness of q∗), it can be argued that the entire sequence must converge to q∗.
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3 Next: On-line Log-loss

We just worked out an algorithm for minimizing the log loss for the exponential family
in the batch setting. The next thing we will do is to consider minimizing log loss in
an online model. Consider betting on horse racing as an example. Experts will provide
probabilities of different horses winning in rounds. In each round, a learner takes all these
expert distributions and must play a single distribution. The learner will then observe a
winning horse and observe a penalty ln 1/q if the learner assigns probability q to that horse.
More generally, we have

• for t = 1 . . . T

– Each expert i chooses a distribution pt,i ∈ ∆X

– Learner chooses distribution qt ∈ ∆X

– Observe xt ∈ X
– Incur loss − ln qt(xt)

We want to find algorithms that incur small regret in comparison to the best expert.
Formally, we want

T∑
t=1

− ln qt(xt) ≤ min
i

T∑
t=1

− ln pt,i(xt)︸ ︷︷ ︸
log-loss of expert i

+ small regret.
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