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1 Introduction and Motivation

For the first part of the course we focused on classification learning, until last week where
we discussed regression problems and trying to estimate a real-valued number.

Today we turn to the question of how to model a probability distribution; this is called
“density estimation.” In this model we will get some samples from a probability distribution
x ~ P and then given the samples, the goal is to estimate P itself.

This model is of particular interest to statisticians and in general those who want to
model things like the distribution of scores on a standardized test. It can also be used
for things like speech recognition. If we model English utterances as coming from some
complex probability distribution, and if we have some model of this distribution, then we
could program speech recognition software to make corrections using Bayes rule and its
confidence that it heard a particular utterance, versus what it would expect in context.
Of course, given a model of a distribution, we could use our model to predict labels. For
instance, if we model the distributions of men/women heights, and then are given the height
of a random person that should be given one of the labels, we can predict the person is a
man if and only if the probability of being a man, according to the modeled distributions, is
more than the probability the person is a woman. This amounts to finding a threshold value
such that the probability a person above that height should be labelled “man” is greater
than .5 (assuming men are taller). Previously in the course, we would have just established
such a threshold value directly, but here we would do so as a function of the distributions
we compute. The approach of modeling distributions, and thus how the data is generated,
is often called a “generative” approach, while the alternative of directly trying to find an
accurate discriminator is said to be a “discriminative” approach.

2 The Principle of Maximum Likelihood

Suppose we are given x1, xs, ..., T, ~ P drawn iid from P, a discrete distribution over some
set X, and suppose we have a set of candidate distributions Q. For ¢ € Q, define ¢(x) to
be the probability of x under q. Then we define the “likelihood of the data under ¢” to be
the probability of seeing exactly x1, ..., z,, if ¢ were the true distribution, namely,
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We see that this “likelihood” quantifies how well ¢ fits x1, ..., z,, and thus we want to find
the ¢ maximizing this product.

As a sanity check, we try a simple example. Consider flipping a coin = that gives 1
with probability p and 0 otherwise. We flip it m times and get heads h of these flips. Let
Q = [0, 1], the set of possible biases of the coin, then the likelihood under ¢ will be:

H {qif 2; = 1 and (1 — q) otherwise} = ¢"(1 — ¢)™ ™"
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Thus to maximize the likelihood, we take the derivative with respect to ¢, set it equal to 0,
giving ¢ = h/m. This matches the intuition that our best guess for the bias of the coin is
the fraction of heads that we’ve observed.

In general, we want to choose ¢ € Q with

maXHq(xi) = max[log(H q(z))] = maxz log q(z;)
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We see that here, —log g(x;) is a measure of how well ¢ fits z; i.e. the discrepancy between
the model and data; we will call it the “log loss” function. Here we will thus have the
average of the log loss over the sample, which is the empirical risk for the log loss function
of q. We also note that the minimal empirical risk should give some estimate of the “true”
expected loss.

We define the “true risk” to be
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where H(P) is the entropy of P.
Note that H(P) doesn’t depend on ¢, so minimizing true risk is equivalent to minimizing
RE(P||q) over g € Q.

3 Maximum Entropy Modeling of Distributions

We now consider a more practical setting. Consider the problem of modeling the habitat
of plant/animal species. Perhaps you are a researcher on an island who has a sample of
butterfly sightings, along with features associated with each sighting (for instance: altitude,
annual rainfall, average temperature, etc.), and you wish to model the population distri-
bution of the butterfly on the island. We make several assumptions: that there exists a
true probability distribution D that would properly model the species, that the sightings
are being sampled from this same distribution D, and that it’s possible to get every bit of
data for each feature for each spot on the map (our domain, X, although we first generally
divide the map into a grid of cells, so that X is finite as in our above assumption).

More formally, let |X| = N and consider z1, ..., z,, ~ D, and features fi,...f, such that
fj + X — R, where our goal is to estimate the true distribution D. We begin by considering
two different approaches.

3.1 Using the Principle of Maximum Entropy
Estimating the whole distribution is difficult, so maybe we should begin by computing
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as an estimate for E,p[f;(z)], the true expectation for the feature f;. Thus we begin by
finding ¢ such that E,[f;] = E[f;] for each f;, where the left half of the equality denotes



the expectation of feature f; under distribution ¢, a candidate distribution from Q (the set
of such candidate distributions over X). In terms of our example, for instance, if we only
have found the butterfly at high altitudes, we find a ¢ which predicts the same.

This gives us a start, but now what? Given no prior beliefs, we would just guess
the uniform distribution, so maybe it would make sense to choose the distribution which is
closest to the uniform distribution, among all distributions which satisfy the above empirical
conditions.

Thus we find ¢ such that for all j, E,[f;] = E[f;] and minimize

RE(g|Junif) = g{qm log (1]%\), —log N — H(q)

where unif is the uniform distribution over X, and H(q) is the entropy as before. We
thus see that, since log N is a constant, this is equivalent to maximizing entropy. This
is sometimes called the “principle of maximum entropy”, and it intuitively corresponds to
being as spread out as possible, subject to constraints.

We summarize this technique by saying we want to find argmax,(H (q)) such that ¢ € P

where P = {q : E,[f;] = E[f;] Vj}.

3.2 Using Exponential-Family /Gibbs Distributions

Another possible technique may be to assume that ¢, the distribution we’re looking for, has
a particular form. Perhaps it would be reasonable to assume that it’s linear in each feature,
except then we will end up with ill-defined probabilities (such as negative values). Thus,
we instead use a linear function in the exponent, and re-scale accordingly. In this case, we

use: "
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where, as stated, we use an exponential to avoid negative values, and we normalize with
Zy to make it a probability distribution. Sometimes these are called “exponential family

distributions” or “Gibbs distributions.” Let Q be the set of distributions that have the
above form.

q(x) =

Now we will use the principle of maximum likelihood; thus we want to find the ¢ such

that we have:
qeQ

max Z log q(x;)

We must quickly note that technically, such a maximum may not exist, but in such a case
there is a limit point of Q, i.e. we instead find the ¢ such that we have:

sup Y _ log q(x;) = max D> logq(:)
1
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where O is the “closure” of Q (that is, Q together with all points that are the limit of
sequences of points in Q), and sup is supremum.
3.3 Equivalence and Uniqueness Results

In fact, the approaches in sections 3.1 and 3.2 have identical solutions. We state this and a
related result as the following theorem:



Theorem. The following are equivalent:

1) ¢* = argmax H(q)
qeP

2) ¢* —argmax log q(x
o =y o)
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And furthermore, any one of these three conditions determines q* uniquely.

We see that the added claim (3) says that it is both a necessary and sufficient condi-
tion to find an element in the intersection of P and Q, and that this element is unique.
This theorem is very useful when trying to prove the convergence of algorithms in settings
like this, as we will see in the next lecture. We will not prove this equivalence, but the
equivalence of the two approaches comes from them being convex duals of each other, as
we will sketch below.

Side note: It is difficult to know how good our solutions are in absolute terms, since
this would be determined by RE(P||q) + H(P) and we don’t know H (P), but it is easy to
check how good solutions are relative to one another since subtracting our approximations
of the first term cancels out the H(p) and gives an accurate comparison.

3.3.1 Sketch of Equivalence of 3.1 and 3.2

We will do the sketch using Lagrange multipliers. We begin with the Lagrangian for the
first formulation from section 3.1:

L= Z )log g +ZA Zq(x)fj(:r))Jrv(ZQ(w)—l)
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where the ¢(z) are our primal variables, and the A;’s and ~ are the dual variables (forcing
equivalence between the empirical and true expectation of the features, and making the
q(x) sum to 1, respectively). First we minimize over the primal variables:
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where Z) = e¥*! acts to normalize the distribution. Thus we see that it gives an exponential

family distribution, and we plug this back into £ and then maximize with respect to the
dual variables:

L= q(x) Z)\jfj(x)—logZ ZAZ +Z)\]Ef]
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which is the log likelihood, or the negative empirical risk. Thus, at the solution, which will
be at a saddle point, the distribution will be a Gibbs distribution and it will have maximum
likelihood /minimum log loss.



