
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 17
Scribe: Matthew Halbasch April 09, 2018

1 Analysis of Winnow

In the last lecture, we studied two different online learning algorithms for learning Linear
Threshold functions. We looked at the Perceptron algorithm, and proved a theorem about
the number of mistakes it can make. At the end of lecture, we introduced Winnow, which
we outlined as:

• Initialize w1,i = 1/N for every i.

• for t = 1, . . . , T :

– if learner makes mistake:

• wt+1,i = 1
Zt
wt,i exp (ηyixt,i) ∀i, where Zt is a normalization factor.

– else:

• wt+1 = wt .

As usual, the prediction ŷt of our algorithm on round t is sign(wt · xt).
We stated a theorem on the number of mistakes of Winnow, which we will prove now:

Theorem 1.1. Assume that we run Winnow for T rounds, and assume that

1. Winnow makes a mistake on every round,

2. ∀t, ||xt||∞ ≤ 1 ,

3. ∃ δ > 0,u such that ∀t, yt(u · xt) ≥ δ, with ||u||1 ≤ 1 and ui ≥ 0 ∀i .

Then,

(# mistakes of Winnow) ≤ ln(N)

ηδ + ln
(

2
eη+e−η

)
≤ 2 lnN

δ2
if η =

1

2
ln

(
1 + δ

1− δ

)
.

Proof. As with the analysis of Perceptron, we want to introduce a potential function Φ
which gives useful upper and lower bounds. This time, we are comparing the vector wt

to some “true” weight vector u, with the condition that both define probability distri-
butions. One natural measure for the “distance” between probability distributions is the
KL-divergence, or relative entropy. We will choose this to be our potential function:

Φt = RE
(
u ‖ wt

)
,

where the relative entropy between discrete distributions P and Q is given by

RE
(
P ‖ Q

)
=
∑
i

Pi ln

(
Pi
Qi

)
.

The idea for this proof will be to look at how much Φ changes from round to round. Since
the relative entropy is always nonnegative, this will provide a bound on the number of
rounds the algorithm can run, and thus the number of mistakes it can make (since we
make a mistake every round).

So, the first thing to look at is the difference between Φt+1 and Φt:

Φt+1 − Φt = RE
(
u ‖ wt+1

)
− RE

(
u ‖ wt

)
=
∑
i

ui ln

(
ui

wt+1,i

)
−
∑
i

ui ln

(
ui
wt,i

)
=
∑
i

ui ln(ui)−
∑
i

ui ln(wt+1,i)−
∑
i

ui ln(ui) +
∑
i

ui ln(wt,i)

=
∑
i

ui ln

(
wt,i
wt+1,i

)
.

Conveniently, now, our update rule is multiplicative, so the ratio wt,i/wt+1,i is easy to
calculate. Explicitly, our update rule is

wt+1,i =
wt,i exp(ηytxt,i)

Zt
,

and the ratio wt,i/wt+1,i is

wt,i
wt+1,i

= Zt exp(−ηytxt,i) .

This tells us that the difference Φt+1 − Φt is given by

2

Φt+1 − Φt =
∑
i

ui ln(Zt)−
∑
i

uiηytxt,i

= ln(Zt) · 1− η yt

(∑
i

uixt,i

)
.

The sum in parentheses is just u · xt, however, and we have assumed that yt(u · xt) ≥ δ,
so we can now bound this difference:

Φt+1 − Φt ≤ ln(Zt)− ηδ .

So, we need to find a bound on Zt now. It is a normalization constant on round t, which
is given by the sum of numerators:

Zt =
∑
i

wt,i exp(ηytxt,i) .

We can bound each of these exponentials by using the fact that the function eηz is convex.
The product ytxt,i is between −1 and 1, so we want to bound eηz in the region [−1, 1]. See
Figure 1 for a graphical depiction of this.

We find that we can bound the exponential by

eηz ≤ eη + e−η

2
+
eη − e−η

2
z

= cosh(η) + z sinh(η) .

Using z = ytxt,i, we can bound Zt:

Zt ≤
∑
i

(wi [cosh(η) + ytxt,i sinh(η)])

= cosh(η)
∑
i

wt,i + sinh(η)yt

(∑
i

wt,ixt,i

)
.

Now, the first sum is the sum of wt,i over all i, but since wt defines a probability distribution,
this is just 1. The second sum is wt · xt, which has the same sign as ŷt by definition. But
since we make a mistake on every round ŷt 6= yt, which means their product is nonpositive,
and so yt(wt ·xt) ≤ 0. Finally, since η ≥ 0, sinh(η) ≥ 0, and so the bound simply becomes

Zt ≤ cosh(η) =
eη + e−η

2
.

3

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0

5

10

15

20 f(z) = cosh() + z sinh()
e z

Figure 1: Depiction of a linear bound for eηz for z ∈ [−1, 1]. The bound is the line
connecting (−1, e−η) with (1, eη), and is given by f(z) = cosh(η) + z sinh(η).

Figure 2: An illustration of how the potential drops on each round.

4

So, going back to Φ, we can obtain a lower bound for how much it must drop each round
(which we will call C) in terms of just η and δ. Explicitly,

Φt+1 − Φt ≤ ln

(
eη + e−η

2

)
− ηδ =: −C .

So, we know that Φ decreases by at least C every round, and so after T rounds it must
decrease by C · T (see the illustration in Figure 2 for a visual). The number of rounds
that the algorithm can run is then determined by Φ1, which we can also bound, since we
initialized w1,i = 1/N ∀i to be uniform:

Φ1 = RE
(
u ‖ w1

)
=
∑
i

ui ln

(
ui

1/N

)
=
∑
i

ui ln(Nui)

≤
∑
i

ui lnN

= lnN ,

where we have used the fact that ui ≤ 1 ∀i in the fourth line. So, as we have argued, this
gives a bound on the number of rounds the algorithm can run:

T ≤ lnN

C
.

Using the definition of C, and noting that the number of mistakes is equal to the number
of rounds, we have

mistakes ≤ lnN

ηδ + ln
(

2
eη+e−η

) ,
which is the bound we wanted to prove. As a quick note, if we make an appropriate choice
of η,

η =
1

2
ln

(
1 + δ

1− δ

)
,

then the bound on the number of mistakes becomes

mistakes ≤ lnN

RE
(
1
2 −

δ
2 ||

1
2

) ≤ 2 ln(N)

δ2
,

which we can get by bounding the relative entropy.

5

2 Extending Winnow

For this proof, we assumed that all ui ≥ 0. In general, we may want to relax this condition,
and there is an easy way to do it. To describe it, consider an example where

u = (.5, −.2, .3) ,

x = (1, .7, −.4) .

We can map these to two 6 dimensional vectors x′ and u′ according to

u 7→ u′ = (.5, 0, .3,
... 0, .2, 0) ,

x 7→ x′ = (1, .7, −.4,
... − 1, −.7, .4) .

That is, we place in the first half of u′ the positive elements of u, and the negative elements
(without the negative sign) in the second half, and fill in zeros everywhere else. In x′, we
place x in the first half, and −x in the second half. This construction preserves the dot
product:

u · x = u′ · x′ ,

and we still have ||u||1 = ||u′||1 and ||x||∞ = ||x′||∞. So, all the assumptions of our theorem
are satified, and we can run Winnow on these new vectors. The resulting algorithm is
called balanced Winnow.

The only added complexity from this is it changes N → 2N , but since the number of
mistakes is logarithmic in N , this is not a large change.

3 Introduction to Regression

Up to now, we have only worried about predicting a yes or no, and have looked at the
probability of being wrong, or the number of times we are wrong. Often, however, predic-
tions are probabilistic in nature, and we instead want to predict the chance of an outcome
(e.g. the chance of rain).

How do we analyze these predictions? For example, if we have two forecasts, and one
predicts a 70% chance of rain, and the other predicts an 80% chance, how do we compare
them if it does rain?

To formalize this, we can define x to be the weather conditions, and y = 1 if it rains,
and 0 otherwise. Assume that (x, y) ∼ D and assume that these are i.i.d. We want to
estimate p(x) = Pr[y = 1|x] = E[y|x]. (This last formulation is more general, and allows
us to predict e.g. the number of inches of rain we expect). These kinds of problems are

6

called regression problems, as opposed to the classification problems we have considered
so far in this class. We are now trying to estimate a real valued number.

In our example, let’s assume that, say, AccuWeather uses h1(x) to estimate p(x), and
the National Weather Service uses h2(x). We want to see if h1(x) or h2(x) predicts p(x)
better, but of course we don’t actually know p(x) either. Instead, we have to rely on the
observed outcomes alone, and find a way to “score” the predictions.

To do this, we consider a “loss” function, which provides a measure of how to “score”
an error. In our first look, we will use a square or quadratic loss function, which is simply
the square of the difference between a predicted probability or expectation and its realized
value:

L = (h(x)− y)2 .

We want to minimize the expected value of our loss (called the risk):

E(x,y)∼D
[
(h(x)− y)2

]
.

In the earlier parts of this course, our loss function was just the indicator variable 1{h(x) 6= y}.
So why does quadratic loss work? We will show that by minimizing the risk, we are

actually forcing h(x) to be as close as possible to p(x). To prove this, consider a single x,
and define p = p(x) = E[y|x], and h = h(x). Then, the loss is

E[(h− y)2] = p(h− 1)2 + (1− p)(h− 0)2

= p(h− 1)2 + (1− p)h2 .

To minimize this, we take a derivative and set it equal to 0:

d

dh
E[(h− y)2] = 2p(h− 1) + 2(1− p)h

= 2ph− 2p+ 2h− 2ph

= 2(h− p) = 0 ,

which is solved when h = p.
So, if we can minimize the loss exactly, we must have h(x) = p(x). But what about a

more general case, where we are just able to get close to p(x)? Here we have a theorem:

Theorem 3.1.

E
[
(h(x)− p(x))2

]
= E

[
(h(x)− y)2

]
− E

[
(p(x)− y)2

]
,

where all expectations are over both x and y

7

Proof. To understand this theorem, the term on the left is what we want to make small.
The first term on the right is something we can actually measure, since it depends only
on y, not p(x). The second term on the right is a measure of inherent randomness in y,
and doesn’t depend on h at all.

To actually prove this, we will first fix x, and take an expected value at the end. This
is using marginalization, which says

Ex
[

Ey
[
· · · |x

]]
= Ex,y

[
· · ·] .

So, if x is fixed, we again define h = h(x), p = p(x) = E[y|x] = E[y]. Then, the left hand
side is just

E
[
(h− p)2

]
= (h− p)2 ,

since there is no y dependence here. On the right hand side, we have

RHS = E
[
(h− y)2

]
− E

[
(p− y)2

]
= E

[
(h2 − 2hy + y2)− (p2 − 2py + y2)

]
= E

[
h2 − 2hy − p2 + 2py

]
= h2 − 2hE[y]− p2 + 2pE[y]

= h2 − 2hp− p2 + 2p2

= (h− p)2 ,

where in the second to last line we have used E[y] = p. This is exactly what we got for the
LHS, so the two are equal, which proves the theorem.

So, now we have justification for minimizing the risk according to this quadratic loss
function. The idea from the first half of class would be to drawm samples (x1, y1), . . . , (xm, ym)
from D, and minimize the sample loss,

Ê
[
(h(x)− y)2

]
=

1

m

m∑
i=1

(h(xi)− yi)2 .

Under this approach, we would consider a class of predictors h ∈ H, and define the
loss Lh(x, y) = (h(x)− y)2, and estimate

E
[
Lh
]
≈ Ê

[
Lh
]
.

Then we would look for uniform convergence results, which can be found in a similar fashion
to what we did earlier in the class. However, we will take a different approach here, and
instead consider particular cases, as well as algorithms specific to those cases.

8

In particular, let’s look at cases where we have linear functions of x. That is, x ∈ Rn,
and h(x) = w · x. In this case, the empirical risk becomes

1

m

m∑
i=1

(w · xi − yi)2 ,

and we want to find the vector w that minimizes this equation. This is just linear regression!
Linear regression is a long-studied problem, and we know of analytical solutions, but

we’ll take a different approach here, and consider how to use online learning to solve this
problem.

In particular, let’s use an online learning model, and follow an algorithm like

• Initialize w1

• for t = 1, . . . , T :

– get xt

– predict ŷt = wt · xt ∈ R
– observe yt ∈ R
– Loss = (ŷt − yt)2

– update wt

• LA =
∑T

t=1(ŷt − yt)2

In this algorithm outline, yt may represent the probability of rain, or the expected number
of inches of rain, etc. We will not make any statistical assumptions about the data here.

4 Conclusion

Next time, we will consider how to analyze these kinds of algorithms. We always need
something to compare the performance of our algorithm to, and in this case we will compare
it to u, the best linear predictor. In particular, we will compare our loss to that of u:

Lu =
T∑
t=1

(u · xt − yt)2 .

We will aim for a result of the form

LA ≤ min
u
Lu + small amount ,

where the small amount is once again called the regret.

9

