
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #16
Scribe: Stefan Keselj April 04, 2018

1 Old model (individuals)

1.1 Recap

Recall the online learning model we have looked at the last two lectures:

• N = # experts

• For t = 1, 2, . . . T

– expert i predicts ξi ∈ {0, 1}
– learner predicts ŷ ∈ {0, 1}
– observe outcome y ∈ {0, 1}

We denote the numbers of mistakes of each expert and the algorithm as a whole as:

• Li = # mistakes of expert i

• LA = E[# mistakes of learner]

Last class we showed that if min
i
Li ≤ K, a variant of the randomized weighted majority

algorithm will achieve:

LA ≤ min
i
Li +

√
Kln(N) +

lg(N)

2

1.2 Regret lower bound

We usually have that min
i
Li ≤ T/2. All we have to do to guarantee this is take any expert

and create a counter expert that always predicts the opposite of the first expert; one of
them has to have error less than or equal to T/2.

Plugging this into the bound above yields:

LA ≤ min
i
Li +

√
T ln(N)

2
+

lg(N)

2

LA

T
≤ min

i

Li

T
+

√
ln(N)

2T
+

lg(N)

2T

As t→∞, the rate at which the learner is making mistakes will approach the corresponding
rate for the best expert.

It would be nice if we could show that any algorithm must have regret at least

√
T ln(N)

2 .
Then we would know our algorithm has optimal regret with respect to the best expert, with
even the constants matching exactly.

Let us consider the worst case adversarial setting. This is the setting where none of the
experts give any information about the outcomes. Imagine that every round, for all i:

ξi =

{
1, with probability 1/2

0, else
and y =

{
1, with probability 1/2

0, else

Every learner will make mistakes half the time, so ∀i, E[Li] = T
2 .

No matter what algorithm we use, it will make mistakes half the time, so E[LA] = T
2 .

Although it might seem that E[min
i
Li] = T

2 by similar logic, it will actually be less. This is

because out of many experts, it is likely the best one got lucky on the random distribution
and achieved better than even error. The value of this expectation is known and we won’t

take time to prove it. It is: E[min
i
Li] ≈ T

2 −
√

T ln(N)
2 .

Therefore, E[LA] & E[min
i
Li] +

√
T ln(N)

2 and we have achieved the desired bound in expec-

tation. This shows that the regret bound for this algorithm is the very best possible. One
reason this is significant is that it demonstrates that in this model we do just as well in a
stochastic setting as we do in an adversarial one.

2 New model (committees)

2.1 Setup

Thus far we have been judging the performance of algorithms against the performance of
the best expert. But what if there is no single expert that performs well, but there is a
subcommittee that performs well when they vote together?

This scenario can be formalized with the following model. Here we will interpret each
component i of input vector xt as an expert. Note that we are using the labels {−1,+1}
instead of {0, 1}.

• N = # experts

• For t = 1, 2, . . . T

– get xt ∈ {−1,+1}N

– learner predicts ŷt ∈ {−1,+1}
– observe outcome yt ∈ {−1,+1}

• Assume there is a vector u ∈ Rn such that yt = sign(u · xt) for all t. This vector u
defines a subcommittee that will predict every outcome correctly under a weighted
vote.

2

There are many potential ways to output ŷt at each time step. We will focus on algorithms
that maintain a weight vector wt and use it to compute a weighted vote, or linear threshold
function: ŷt = sign(wt ·xt). An important observation we should make is that the problem
of learning a subcommittee is just an example. More generally, the examples xt are really
just points in RN , and we are supposing that there is a linear threshold function defined by
a vector u that correctly classifies all of the examples.

• initialize w1 = 0

• For t = 1, 2, . . . T

– get xt ∈ RN

– learner predicts ŷt = sign(wt · xt) ∈ {−1,+1}
– observe outcome yt ∈ {−1,+1}
– update: wt+1 = F (wt,xt, yt)

2.2 Perceptron

The first such algorithm we will look at is called the Perceptron algorithm. It’s been around
for a while, since the 1950’s. This is how it works:

• initialize w1 = 0

• For t = 1, 2, . . . T

if (learner made mistake) [which is equivalent to (ŷt 6= yt) or (yt(wt · xt) ≤ 0)]

– wt+1 = wt + ytxt

else

– wt+1 = wt

In the case where an example is classified correctly, the algorithm doesn’t change anything
about its state wt. Intuitively this makes sense; as the adage goes, “if it ain’t broke, don’t
fix it”.

In the case where an example is classified incorrectly, the algorithm pushes the hyperplane
towards the point if it is positive or away from it if it’s negative. This makes sense because
it helps the algorithm not repeat similar mistakes. To see why this is the case, let us consult

a simple example. Say wt = [12 ,
√
3
2] and example xt = [−1, 0] is labelled positively. The

new weight will be wt+1 = wt + ytxt = [12 ,
√
3
2] + [−1, 0] = [−1

2 ,
√
3
2]. This new weight would

classify xt correctly. This example is illustrated in the figure below.

3

A natural next step is for us to try to analyze this algorithm. To say anything interesting
we need to make some assumptions:

1. The learner makes a mistake at every round. This implies T is equal to the number of
mistakes. We can assume this without loss of generality because the algorithm does
nothing on rounds on which the learner makes no mistake.

2. ∀t : ||xt||2 ≤ 1

3. ∃u, δ such that ||u||2 = 1 and ∀t: yt(u · xt) ≥ δ > 0. This means that every example
is correctly classified by a margin of at least δ.

Theorem. Under the assumptions above, the Perceptron algorithm makes at most 1/δ2

mistakes.

Proof.

The driver of our proof will be a function Φt called the potential function. In physics, a
potential function describes how much potential there is for stuff to happen at each time t,
which is usually tied to how much energy there is left in a system at time t.

In our case, the potential function is Φt = wt · u/||wt||2 ≤ 1. It is the cosine similarity
between our vector wt and the desired vector u. We will show that with every iteration, our
cosine similarity grows, and since it can be at most 1, the number of iterations is bounded
by some number. Since there is exactly one mistake every round, this number will also

4

bound the number of mistakes.

Step 1. wT+1 · u ≥ Tδ

Proof.

wt+1 · u = (wt + ytxt) · u
= wt · u + yt(u · xt)

By assumption 3 yt(u · xt) ≥ δ, so with every iteration wt · u increases by at least δ. Since
we start at w1 = 0, by the time the T th trial has finished we will have wT+1 · u ≥ Tδ.

Step 2. ||wT+1||22 ≤ T

Proof.

||wT+1||22 = wt+1 ·wt+1

= (wt + ytxt) · (wt + ytxt)

= wt ·wt + 2yt(wt · xt) + y2t xt · xt

Now there’s a lot of cleanup we can do here. The first term is ||wt||22. The second term is less
than or equal to 0 because of assumption 1 (we make a mistake at each round). The third
term is ||xt||22 ≤ 1 because no matter what yt is, y2t = 1. Therefore, ||wt+1||22 ≤ ||wt||22 + 1.
In similar fashion to step 1, since we know ||w1|| = 0 and ||wt||2 increases by at most 1
every iteration, we know ||wT+1||2 ≤ T .

Putting steps 1 and 2 together yields: 1 ≥ ΦT+1 ≥ Tδ√
T

= δ
√
T =⇒ T ≤ 1/δ2. Since there

is one mistake every round: T = # mistakes ≤ 1/δ2, as desired.

An interesting consequence of this is begotten by the fact that an algorithm must make
at least as many mistakes as the VC-dimension of its hypothesis class. If we let H be the
hypothesis class of the perceptron, then:

VC-dim(H) ≤ # mistakes ≤ 1/δ2

So the VC-dimension of the algorithm’s hypothesis class can be at most 1/δ2.

Let’s take a moment to appreciate the significance of this statement. The hypothesis space
of the perceptron is the hypothesis space of linear threshold functions with margin at least
δ, exactly the same class we looked at for SVM’s. At that time, it was claimed without
proof that the VC-dimension of this class is at most 1/δ2. Now we see that this bound
follows immediately as a corollary from the analysis of the perceptron algorithm.

This new model was motivated by the scenario where there is a good subcommittee and we
want to select it. An implicit assumption here was that the subcommittee does not consist
of all the experts. Thus far we have not considered the explicit exclusion of certain experts.

Let us consider this case now, it will look something like this:

5

xt =
1
√
N

[
+ 1,−1,−1,+1, . . .

]
, all the experts report their predictions

u =
1
√
k

[
0, 0, 1, 1, 0, 1, . . .

]
, k experts form the subcommittee

The input vector and subcommittee selection vector are normalized to have 2-norm 1. Let
it be that the subcommittee that is selected always gets the right answer. This means
yt(u · xt) ≥ 1/

√
Nk, because this is the smallest positive value the u · xt can take.

This is a margin that satisfies assumption 3 in our prior scenario, where δ = 1/
√
Nk. The

theorem we just proved then implies that the number of mistakes mistakes is at most Nk.
This is a useful bound when N and k are not too large, but it is not useful when N gets very
large. In many applications this can be the case, because N corresponds to the number of
features in our inputs.

It is for this reason that the Winnow algorithm was invented. It is similar to both the
Perceptron and AdaBoost, and we will overview it now. A disclaimer: Winnow refers to a
family of algorithms, and we are looking at just one version.

2.3 Winnow

The algorithm is as follows:

• initialize ∀i w1,i = 1/N

• For t = 1, 2, . . . T

if (learner made mistake)

– ∀i: wt+1,i = wt,i e
ηyixt,i/Zt [η > 0 is a parameter]

else

– wt+1 = wt

• Note that Zt is a normalization factor to make sure each wt sums to 1.

We can prove a bound on the number of mistakes made by this algorithm, under a similar
set of assumptions as before. In this class we are running out of time so the theorem will
only be stated, then in the next class we will actually prove it.

The assumptions are:

1. The learner makes a mistake at every round. This implies T = # mistakes.

2. ∀t : ||xt||∞ ≤ 1

3. ∃u, δ such that ||u||1 = 1, ∀i: ui ≥ 0, and ∀t: yt(u · xt) ≥ δ > 0

Theorem.

Under the assumptions above, the Winnow algorithm has # mistakes≤
ln(N)

ηδ + ln(2/(eη + e−η))

If we set η = 1
2 ln((1 + δ)/(1− δ)) then the bound is at most 2ln(N)/δ2.

6

Also, going back to the example with the subcommittee, we now normalize the vectors
differently: xt = [+1,−1,−1, . . .], u = 1

k [0, 0, 1, . . .]. This gives δ = 1
k so the mistake

bound we get in this case is 2k2ln(N).

7

