
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #15
Scribe: Seyed Sobhan Mir Yoosefi April 2, 2018

1 Recap

Last time, we introduced an online learning model. Online learning is different from what we
have seen before; in these models at each step we see only one example, make a prediction,
then we get feedback about our prediction and we can possibly update our prediction rule for
the next times. Despite what we did in batch learning we do not assume that examples are
coming from a fixed distribution or even that they are random at all. The online learning
model that we introduced is called “Learning with Expert Advice” and can be formally
written as:

• N = # experts

• For t = 1, 2, . . . , T

– every expert i predicts ξi ∈ {0, 1}
– learner predicts ŷ ∈ {0, 1}
– learner observes true outcome y ∈ {0, 1}
– there is a mistake if ŷ 6= y

For the case that we have a “perfect” expert that makes no mistake we gave an algorithm
called ”Halving Algorithm” and we proved

(# mistakes of Halving Algorithm) ≤ lgN

where lgN = log2N .

2 Connection to PAC Learning

Consider an online version of PAC learning in which examples are coming from the domain
X , one at a time. Examples are not necessarily random and can be completely adversarial.
The learner tries to predict the label of the example, and after its prediction, the true label
will be revealed. The true labels are determined according to some unknown target concept
c ∈ H where H is finite and known. It can be formally written as:

• finite hypothesis space H = {h1, h2, . . . , hN}

• target concept c ∈ H

• at each round

– observe x ∈ X (can be adversarial)

– predict ŷ

– observe y = c(x)

We want to show that this online version of PAC learning is actually a special case of
“Learning with Expert Advice”. Consider an expert for each hypothesis hi in H with
prediction ξi = hi(x). Therefore it can be formally written as:

• finite hypothesis space H = {h1, h2, . . . , hN}

• target concept c ∈ H

• at each round

– observe x ∈ X (can be adversarial)

– ∀i ∈ [n] : ξi = hi(x)

– predict ŷ

– observe y = c(x)

Since c ∈ H, we know that there is a “perfect” expert. Therefore we can apply Halving
Algorithm and we can be sure that the number of mistakes is at most lgN = lg |H|.

2.1 Mistake Bound

Now it is natural to ask whether Halving Algorithm is the best we can do or not. We are
going to partially answer this question. Let’s start by defining

MA(H) = max
c,x

(# mistakes made by A)

opt(H) = min
A
MA(H)

where A is a deterministic algorithm in the definitions above. For a deterministic algorithm
A, we define MA(H) as the maximum number of mistakes that A makes over adversarial
choice of examples in X and target concept inH. Now we can define opt(H) as the minimum
number of mistakes in the worst adversarial setting over the choice of deterministic algorithm
A. By the definition we know that opt(H) ≤ MHalving(H) and we have previously proved
that MHalving(H) ≤ lg |H|. Therefore we have

opt(H) ≤MHalving(H) ≤ lg |H|

Now we want to prove that opt(H) is at least V Cdim(H).

Theorem 1. V Cdim(H) ≤ opt(H)

Proof. Let A be an arbitrary deterministic algorithm and let d = V Cdim(H). We know
that there are some x1, x2, . . . , xd that can be shattered by H. Let’s choose c ∈ H such that

• for t = 1, . . . , d

– adversary present xt

– ŷt = A’s prediction on xt

– yt = c(xt) 6= ŷt

Since x1, . . . , xd is shattered by H there exists a c ∈ H that for every t we have yt =
c(xi) 6= ŷt. In addition since A is deterministic, the adversary can simulate A ahead of time
to pick the right c. Therefore there is an adversarial setting that can force A to make d
mistakes.

2

Putting all together we have

V Cdim(H) ≤ opt(H) ≤MHalving(H) ≤ lg |H|

We can see that our earlier complexity measures for PAC learning, V Cdim(H) and lg |H|,
turn out to also largely control learnability in the online model as well.

3 Weighted Majority Algorithm

Let’s go back to “Learning with Expert Advice” that we had. It is not always the case
that we have a perfect expert, and in this case, if we apply the Halving Algorithm which
eliminates experts as soon as they make a single mistake, we will end up with no expert to
listen to. The general idea then is to instead keep the experts who make mistakes, but listen
less to their advice. Therefore we keep a weight for each expert, and if some expert makes a
mistake, we lower its weight. Then our prediction becomes a weighted vote of experts. This
algorithm is called the Weighted Majority Algorithm (WMA), and can be written formally
as:

• Parameter β ∈ [0, 1)

• weight wi for each expert i

• initially we have wi = 1 ∀i

• at round t:

– get ξi ∈ {0, 1} ∀i
– q0 =

∑
i:ξi=0wi and q1 =

∑
i:ξi=1wi

– ŷ =

{
1 q1 > q0

0 otherwise

– learner observes y ∈ {0, 1}
– for each i that ξi 6= y update wi ← wiβ

Theorem 2.

(#mistakes of WMA) ≤ aβ(#mistakes of best expert) + cβ lgN

where

aβ =
lg(1

β)

lg(2
1+β)

and cβ =
1

lg(2
1+β)

Let’s first look at some values of β.

β aβ cβ
1
2 ≈ 2.4 ≈ 2.4
→ 0 +∞ 1
→ 1 2 +∞

As β gets closer to 0, cβ converges to 1, but on the other hand aβ goes to +∞. As β gets

3

closer to 1, aβ converges to 2, but on the other other hand cβ goes to +∞. β = 1
2 seems

to be the point in which aβ ≈ cβ. Therefore, there is a trade-off here: smaller β results in
smaller cβ, but larger aβ; on the other hand, larger β results in smaller aβ, but larger cβ.
If we divide both sides by T we get

(#mistakes of WMA)

T
≤ aβ

(#mistakes of best expert)

T
+ cβ

lgN

T

As T → ∞, we can see that cβ
lgN
T → 0. Note that term (#mistakes of WMA)

T is the average

rate at which the learner makes mistakes. The term (#mistakes of best expert)
T can also be

interpreted as the average rate in which the best expert makes mistakes. Therefore as T
gets large, WMA’s mistake rate gets bounded by a constant factor aβ times the mistake
rate of the best expert.

Proof. Define W =
∑N

i=1wi. Initially we have W = N . On some round, let y be the true
outcome, wi’s be the current weights, and wnewi ’s be the updated weights after this round.
Suppose y = 0 (the case y = 1 is similar). By letting Wnew be the sum of updated weights
we have:

W new =
N∑
i=1

wnew
i

=
∑
i:ξi=0

wi +
∑
i:ξi=1

wiβ

= βq1 + q0

= W − (1− β)q1

If the learner made a mistake on this round then we know q1 ≥ q0 or equivalently q1 ≥ W
2

which results in

W new = W − (1− β)q1

≤W − (1− β)
W

2

=
1 + β

2
W

Our initial W is N , and after each mistake W decreases at least by a factor of 1+β
2 . Note

that on all rounds, including rounds where we make no mistake, W remains the same or
decreases since 0 ≤ β < 1. Therefore after m mistakes, we have the following bound:

W ≤
(

1 + β

2

)m
N

Let Li be the number of mistakes that the i-th expert makes. After each mistake, the new
weight is the old weight times β; therefore at the end we have

wi = βLi

It is clear that W ≥ wi for each i, since weights are non-negative. Thus we have

∀i : βLi ≤W ≤
(

1 + β

2

)m
N

4

Solving for m will give us the bound

∀i : m ≤
lg(1

β)Li + lgN

lg(2
1+β)

Since it is true for all Li, it’s also true for mini Li:

m ≤
lg(1

β) mini Li + lgN

lg(2
1+β)

4 Randomized Weighted Majority Algorithm

We can see that aβ in WMA’s mistake bound is always greater than or equal to 2; therefore
we only proved that our mistake rate is at most twice the rate of the best expert which gives
us a weak result if the best expert makes many mistakes (for example if the best expert has
error rate of 30%, we will end up with 60%, which is even worse than random guessing).
In order to improve the bound, we should introduce randomness. The next algorithm is
called Randomized Weighted Majority Algorithm which is very similar to WMA. The only
difference is that rather than predicting ŷ by weighted majority vote, we pick some expert
with probability proportional to its weight and let its prediction be ours for this round. The
algorithm is as follows:

• Parameter β ∈ [0, 1)

• weight wi for each expert i

• initially we have wi = 1 ∀i

• at round t:

– get ξi ∈ {0, 1} ∀i
– q0 =

∑
i:ξi=0wi and q1 =

∑
i:ξi=1wi

– ŷ =

 1 with probability

∑
i:ξi=1 wi∑N
i=1 wi

= q1
W

0 with probability

∑
i:ξi=0 wi∑N
i=1 wi

= q0
W

– learner observes y ∈ {0, 1}
– for each i that ξi 6= y update wi ← wiβ

Or equivalently, let ŷ = ξi with probability wi
W . Now let’s analyze this algorithm

Theorem 3.

E[(#mistakes of RWMA)] ≤ aβ(#mistakes of best expert) + cβ lnN

where

aβ =
ln(1

β)

1− β
and cβ =

1

1− β

5

In this case we can show that αβ → 1 as β → 1, which means for large T , the expected
mistake rate of RWMA will be close to the mistake rate of the best expert.

Proof. Define ` as the probability that RWMA makes a mistake on a round

` = Pr[ŷ 6= y] =

∑
i:ξi 6=y wi

W

As before let’s see how W changes in a round:

W new =
∑
i:ξi 6=y

wiβ +
∑
i:xi=y

wi

From the definition of `, we know that
∑

i:ξi 6=y wi = `W .

= (`W)β + (W − `W)

= W (1− `(1− β))

Therefore our final W can be written as

W final = N · ((1− `1(1− β))) · (1− `2(1− β)) · · · (1− `T (1− β))

where `t is the probability of mistake on round t. Applying 1− x ≤ e−x ∀x:

≤ N ·
T∏
t=1

exp(−`t(1− β))

= N · exp

(
−(1− β)

T∑
t=1

`t

)
Note that LA =

∑T
t=1 `t is the expected number of mistakes that RWMA makes. As before,

we have W final ≥ wi = βLi , so we can write

∀i : βLi ≤W final ≤ Ne−(1−β)LA

Solving for LA will give us the bound

LA ≤
ln(1

β)

1− β
min
i
Li +

1

1− β
lnN

5 More Discussion

We want to talk about how to choose β. If we know some value K which is an upper bound
on the number of mistakes of the best expert, that is, for which mini Li ≤ K, then putting
β = 1

1+
√

2 lnN
K

will give us the bound

LA ≤ min
i
Li +

√
2K lnN + lnN

A natural question to ask is whether we could do better or not. The answer is yes — we can
achieve this by doing something between WMA and RMWA. By looking at Figure 1, we can
see three different prediction rules. The y-axis is the probability that the learner predicts

6

Figure 1: comparison between different prediction rules

1, and the x-axis is the weighted fraction of experts predicting 1. The green curve shows
WMA’s prediction, and the red curve shows RWMA’s. By choosing a different algorithm,
something like the blue curve in the figure, we can achieve

LA ≤
ln(1

β) mini Li + lnN

2 ln(2
1+β)

whose constants are exactly half of the constants we had in the WMA bound. By tuning β
for the case that we know mini Li ≤ K, we can achieve

LA ≤ min
i
Li +

√
K lnN +

lgN

2

If we have a “perfect” expert, it means we can set K = 0 and get the following bound

LA ≤
lgN

2

which is half the Halving Algorithm’s bound.

7

