
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #14
Scribe: Pierre Bayle March 28, 2018

1 Support Vector Machines

Let’s recall that the goal of Support Vector Machines is to find a separating hyperplane
whose margin is as big as possible.

Given (x1, y1), . . . , (xm, ym) where xi ∈ Rn, yi ∈ {−1,+1}, the goal is to find v ∈ Rn to
solve

max δ

subject to yi(v · xi) ≥ δ, i = 1, . . . ,m

‖v‖2 = 1

δ

δ

The above illustration of an SVM is based on an illustration found online 1.

We have the following result in terms of VC dimension.

• VC-dim (linear threshold functions with margin δ) ≤ 1
δ2

if ‖xi‖2 ≤ 1,∀i.

• VC-dim (linear threshold functions with margin δ) ≤
(
R
δ

)2
if ‖xi‖2 ≤ R,∀i.

1.1 Primal problem

We saw in the previous lecture that the previous maximization problem can be written as

min
w

1

2
‖w‖22

subject to yi(w · xi) ≥ 1, i = 1, . . . ,m

1https://elbauldelprogramador.com/en/creating-trees-dependency-graphs-svms-in-tikz/

This is called the primal problem.
In terms of the previous problem, w is defined as w = v

δ .

1.2 Dual problem

We saw that this problem can be written in terms of other variables

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyj (xi · xj)

subject to αi ≥ 0, i = 1, . . . ,m

w of the primal problem can then be computed as
∑

i αiyixi.

1.3 Output hypothesis

The output hypothesis is defined as

h(x) = sign(v · x)

= sign(w · x)

= sign

(∑
i

αiyi(xi · x)

)

1.4 Observations

There are two observations to be made:

• Thanks to the dual problem we can compute the vector w as a linear combination
of the examples. The analysis carried out in the last class even showed that w is a
linear combination of the support vectors (which are the only examples xi for which
the corresponding dual variables αi are non-zero).

• In the dual problem the examples only appear via their inner products. We only need
to know how to compute the inner products. We will give more explanation later.

2 Non-linearly separable case

So far we only studied the case where the data was assumed to be linearly separable, that
is to say that there exists a separating hyperplane.

However with a real dataset there is no guarantee that our data is linearly separable.
What happens if we remove this assumption? How can SVM be used in that case? We will
talk about two ways to deal with this.

2.1 Soft-margin approach

To have a first understanding of this approach, let’s assume that the data is “almost”
linearly separable.

2

δ

δ

ξ
i

ξ
j

This illustration is based on the same online illustration as before.

The idea is that we allow the algorithm to move a few data points if necessary. In the
below optimization problem, for a given i, ξi represents the distance that an example xi
would need to be moved to have margin at least 1. The idea is then to minimize both our
usual objective 1

2‖w‖
2
2 and the sum

∑
i ξi.

The optimization problem is

min
w

1

2
‖w‖22 + C

∑
i

ξi

subject to yi(w · xi) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

The second term is a penalization term, and C a constant.
We won’t focus that much on this approach, but rather on the following one.

2.2 Projection into a higher dimensional space

If we have to deal with the kind of data displayed in the figure below, we see that it is not
possible to linearly separate our data.

The idea is that by projecting the data set into a higher dimensional space, the data
set can be linearly separable in this new space and we can use the simple SVM in this new
space.

3

For example, with R2 being the original space, we can define the following mapping F
from R2 to R6:

x = (x1, x2) 7→ F (x) = (1, x1, x2, x1x2, x
2
1, x

2
2)

Actually, a “useful” mapping would have other constants in front of the terms x1, x2
and x1x2, as we will see later, but let’s assume for the moment that we use F as defined
above.

An SVM in this new space gives a vector v = (a, b, c, d, e, f) that defines the following
hyperplane in R6:

{x ∈ R6 : 0 = v · F (x) = a+ bx1 + cx2 + dx1x2 + ex21 + fx22}

In the new space R6, this set is a hyperplane. In terms of the initial two-dimensional
space R2, this set is a conic section. For instance it can be an ellipse, or a circle.

Therefore this approach can help us separate the data we had before:

In general, we can start with an n-dimensional space and use mappings whose output
vectors are all the monomials of degree smaller than or equal to k. Therefore we map to a
space of dimension O(nk).

However, using SVM in the higher dimensional space without giving more thought about
it is a terrible idea, for two main reasons:

• Intuitively, the amount of data we need is getting bigger with the dimension. This is
the curse of dimensionality, a statistical problem.

• The computational time and the storage are also getting bigger. This is a computa-
tional problem. For instance, beginning with a 100-dimensional space and considering
all the monomials of degree smaller than or equal to 6, we end up with vector of size
O(1006) in the higher dimensional space.

But SVM can get rid of these two problems:

• Concerning the statistical problem, we have two different ways to analyze SVM’s.
Both ways suggest that increasing the dimension with the previous mappings won’t
necessarily be a problem, even if the increase can be gigantic.

– In terms of support vectors: the number of support vectors doesn’t depend ex-
plicitly on the dimension. It could even happen that we need fewer support
vectors when increasing the dimension.

4

– In terms of VC dimension: the bound
(
R
δ

)2
doesn’t depend explicitly on the

dimension.

• Concerning the computational problem, we can notice that the only operation on
vectors is the inner product. Let’s explain it further below.

We are faced with the computation of F (x) · F (z) for x, z ∈ Rn. The obvious thing
to do would be to compute F (x), F (z) and then to compute their inner product. But as
said above this can be very time and memory-consuming. To solve this issue, we introduce
the kernel trick. First, we introduce it in R2. As said above, we change the mapping F by
multiplying some components by constants.

x = (x1, x2) 7→ F (x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2)

The hyperplane defined by {x ∈ R6 : 0 = v · F (x)} is exactly the same as before.
Now let’s compute F (x) · F (z).

F (x) · F (z) = 1 + 2x1z1 + 2x2z2 + 2x1x2z1z2 + x21z
2
1 + x22z

2
2

= (1 + x1z1 + x2z2)
2

= (1 + x · z)2

This is what is called the kernel trick. This is really important in terms of computational
savings: in order to compute F (x) · F (z), we only need to compute the inner product in
the original space x · z, add 1, and square the result. We never have to explicitly map to
the high-dimensional space.

This “trick” generalizes.
For n a positive integer and a suitable choice of F , we can have, for x, z ∈ Rn

F (x) · F (z) = (1 + x · z)k

In general, a kernel is a real-valued function K : (x, z) 7→ K(x, z) defined on pairs and
satisfying the Mercer conditions:

• K is symmetric

• K is positive definite

For example, (1 + x · z)k defines a polynomial kernel and exp(−c‖x − z‖22) defines a
Gaussian radial basis function kernel. The class of kernels is very large: other kernels have
be defined on entirely different spaces, such as strings, trees, and lots more.

When mapping in a higher dimensional space, δ and R will both tend to get larger.
Therefore, to bound the VC dimension with the formula given previously, we see that there
is a trade-off between δ and R.

In practice, we can start with a given k (recall that this k is the highest degree of the
monomials considered), for instance k = 1, and increase it sequentially. We would see that
performance first improves and then degrades.

5

3 Comparison of SVM and Boosting

We will compare SVM’s and Boosting in order to find their similarities and differences.
First we need to rewrite a few results in the context of Boosting so that they look like what
we get in the context of SVM’s.

A Boosting algorithm never “touches” the examples directly, but instead, only interacts
with the data by way of the weak learning algorithm and the weak hypotheses. So in a
sense, the data, from the Boosting algorithm’s prospective, is given by the predictions of
the weak hypotheses on the data. This motivates us to focus on the predictions of the weak
hypotheses.

Assume that the hypothesis space H of all possible weak hypotheses is finite. We can
list all the elements of this space:

H = {g1, . . . , gN}
Following the motivation written above, we can define the following vector h(x) ∈

{−1,+1}N for x an example

h(x) = 〈g1(x), . . . , gN (x)〉
We have |gj(x)| = 1, ∀j, so maxj |gj(x)| = 1, that is to say ‖h(x)‖∞ = 1.

During Boosting, we find α1, . . . , αT , h1, . . . , hT . The prediction associated to a vec-

tor x is then sign
(∑

t αtht(x)∑
t αt

)
. This prediction can be rewritten, for some a1, . . . , aN , as

sign
(∑N

j=1 ajgj(x)
)

, where the gj are the elements of H. Notice that the majority of the

coefficients aj are likely to be zero.
Let’s define a = 〈a1, . . . , aN 〉. The prediction above can then be written as sign(a·h(x)).

We have aj ≥ 0,∀j, and
∑

j aj = 1. Therefore ‖a‖1 = 1.

Recall from previous lectures that in the case of Boosting, the margin is equal to yf(x)
where f(x), in the notation above, can be written as a · h(x). Therefore the margin is
yf(x) = y(a · h(x)).

Thanks to these remarks, we can now compare SVM and Boosting:

SVMs Boosting

inputs ‖x‖2 ≤ 1 ‖h(x)‖∞ = 1

we find ‖v‖2 = 1 ‖a‖1 = 1

prediction sign(v · x) sign(a · h(x))

margin y(v · x) y(a · h(x))

SVM and Boosting are very similar, the main differences are the norms:

• SVM is related to the Euclidean norm ‖.‖2.

• Boosting is related to the norms ‖.‖∞ and ‖.‖1.

6

4 The online learning model

4.1 Introduction

For much of the rest of the course, we will focus in the lectures on a completely different
topic: the online learning model. In this lecture we will introduce it.

Previously in the class, we were focusing on algorithms that compute a hypothesis after
receiving a batch of random examples. This hypothesis is “frozen”, in the sense that it
doesn’t change after receiving this batch of examples.

In the online learning model, we get one example at a time, we then make a prediction
and get feedback, then we get a second example, and so on. Training and testing happen
at the same time. In comparison with other learning models, the algorithms tend to be
more simple in the online learning model, even if it is becoming less true nowadays. One
very important point about the online learning model is that we can analyze it without any
statistical assumption about the data or even with adversarial data.

An example of such a configuration is when everyday we want to predict whether the
stock market is going up or down on this particular day, and do this every day. At the
beginning of every day, we predict whether it is going to be up or down. At the end of the
day, we see the real outcome: this is the feedback. We can imagine a similar configuration
for weather forecasting.

4.2 Learning with expert advice

An example of online learning is learning with expert advice. The “experts” can be people,
simple prediction rules, algorithms, etc.

N is the number of experts.
For t = 1, . . . , T :

• each expert makes a prediction ξi ∈ {0, 1}

• the learner predicts ŷ ∈ {0, 1} based on the predictions of the experts

• the learner observes the actual outcome y ∈ {0, 1}

• there is a mistake if ŷ 6= y

The goal for the learner (also called master) is to make as few mistakes as possible, even
in comparison with the best expert, and without any assumption about how the data is
generated.

For example, if the learner wants to predict whether a particular stock is going to be
up or down at the end of every day, with expert advice, the configuration looks like the
following.

experts learner(master) actual outcome

1 2 3 4

day 1 ↑ ↑ ↓ ↑ ↑ ↑

day 2 ↓ ↑ ↑ ↓ ↓ ↑
...

number of mistakes 37 12 67 50 18

7

Let’s see what can we say about the number of mistakes when we assume that there is
at least one expert that makes no mistake at all.

We assume that there exists an expert that is never wrong, so as soon as one expert
makes a mistake, the learner should never listen to that expert again. Then assume that at
each round, the learner makes its prediction by taking the majority vote of the remaining
experts. This is the halving algorithm.

Define W as the number of experts that didn’t make any mistake so far. W will change
throughout time. Initially, W = N the total number of experts. And W ≥ 1 is always true
because we assume that there is at least one never mistaken expert.

If the learner makes a mistake, then at least one half (because the learner is using a
majority vote) of the remaining experts made a mistake at this round: we don’t listen to
them anymore.

Therefore, after m mistakes, we have W ≤
(
1
2

)m
N . So we can bound W .

1 ≤W ≤
(

1

2

)m
N

From 1 ≤
(
1
2

)m
N , we deduce

m ≤ log2N

Without any stochastic assumption, we were able to bound the total number of mistakes
made by the learner.

8

