
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 13
Scribe: Matt Myers March 26, 2018

1 Motivation

1.1 Introduction

Last week, we talked about the theoretical question behind boosting (increasing the effec-
tiveness of a weak learning algorithm), and analyzed an algorithm for boosting in the form
of AdaBoost. We found that it ultimately maximized the margins of the training exam-
ples — intuitively, the classifier’s “confidence” in its predicted label — which translated to
better generalization error. Today, we will discuss a classification algorithm that seeks to
directly maximize these margins, in the form of support vector machines (SVMs).

1.2 Classifier margins

The algorithm that we are about to study assumes that examples are points in Euclidean
space. This is a reasonable assumption, since generally most of the data that we are
interested in has features that can be encoded as real-valued dimensions in Euclidean space
(note that we are still in the context of classification, where each example is associated with
a binary label).

Consider this sample of positive and negative points. One intuitive method for classifying
these points is to divide them using a line, where all of the points above the line are predicted
to be positive examples (green), and all the points below the line are predicted negative
(red). This type of classifier is known as a linear threshold function (LTF).

Previously in this class, we have proven some results that hold for any hypothesis that is
consistent with the training examples. However, some lines seem intuitively better fitting to
the data than others. Consider lines A and B below. Both of them are consistent with the
data, thus equally“good” in terms of the previous analysis. However, while line A appears
to give each example a healthy margin, line B is very close to calling the negative point
towards the bottom left positive.

Intuitively, it seems small movements of an example shouldn’t change how the example
is classified. More formally, any point within distance δ from an example xi should have
the same label yi, as shown below.

The problem of finding a linear separator (a hyperplane in higher dimensions) consistent
with the sample such that this δ is maximized is equivalent to finding a consistent linear
separator with a distance of at least δ from any example in the training set.

Intuitively, this separating line (generally a hyperplane in higher dimensions) is held
in place by the examples that are exactly at distance δ away. This distance δ from the

2

hyperplane to the closest point(s) is referred to as the margin, and the set of points at a
distance of exactly δ are the support vectors for this linear separator. We will see that this
set of points is sufficient to define the linear separator.

1.3 Justifying maximization of margins using VC-dimension

In order to formally justify selecting the separating hyperplane with the largest margin, we
turn to the three ingredients for effective learning that we have explored so far in this class:
having enough data to train on, finding a hypothesis that fits the sample well, and the
complexity of the hypothesis space. Because we are currently comparing between classifiers
that are a) trained on the same sample and b) are consistent with this sample, the remaining
tool we have is analyzing the complexity of the hypothesis space. Using VC-dimension (only
considering planes passing through the origin for simplicity):

• The VC-dimension of linear threshold functions in n dimensions is n. While this may
seem manageable, in practice n can be very large in applications like machine learning.

• If all of our points fit inside a ball of radius R (which is true for some R for any
finite set of points), then the VC-dimension of linear threshold functions with margin
δ is ≤ (R/δ)2. This expression doesn’t (directly) depend on the dimensionality of the
data, and we also have that the VC-dimension shrinks as δ grows, motivating the idea
of choosing a linear threshold function to make δ as large as possible.

2 Finding the hyperplane with the largest margin

2.1 Required linear algebra

For this analysis, we will use the following facts from linear algebra:

• ||v||2 represents the `2 or Euclidean norm of the vector v (abbreviated as ||v|| for the
remainder of the notes).

• A hyperplane passing through the origin is defined by a vector v normal to it. The
distance from a point x to this hyperplane is the absolute value of the dot product,
or inner product, |v · x|. Importantly, this distance v · x is signed: the direction of
v indicates the “above” direction of the hyperplane, and v · x > 0 indicates that x
is above the hyperplane, while v · x < 0 indicates that x is below the hyperplane
(naturally, v · x = 0 implies that x is on the hyperplane).

3

2.2 Optimization problem

Given a sample of m examples S = 〈(x1, y1), . . . , (xm, ym)〉, xi ∈ IRn, yi ∈ {+1,−1}:

Problem: Find v to maximize δ, subject to ||v|| = 1 and

for all i,

{
v · xi ≥ δ if yi = +1

v · xi ≤ −δ if yi = −1

Immediately, we can combine these into a single case using the definition of yi, to obtain
yi(v · xi) ≥ δ for all i. Then, we can divide both sides of this inequality by δ to obtain
yi(w · xi) ≥ 1 where w = v/δ, thus getting rid of the constraint on v. Because ||w|| = 1/δ,
we now have a new form for the optimization problem:

Problem: Find w to minimize 1
2 ||w||

2 subject to yi(w · xi) ≥ 1 for all i.

(The 1/2 and square make it easier to take the derivative in subsequent steps). We
now have a convex program (a convex program with linear constraints), one of the first
applications of convex programming in machine learning. Note that in order to classify a test
example x using the output of these programs, simply predict ŷ = sign(v ·x) = sign(w ·x).

2.3 Forming the Lagrangian

To form the Lagrangian function, we first solve for 0 on the right-hand side of the constraints
and introduce a function bi(w) = yi(w · xi) − 1 to consolidate the left-hand side. The
Lagrangian is then the difference between the objective and the constraints:

L(w,α) =
1

2
||w||2 −

m∑
i=1

αibi(w)

where αi are the Lagrange multipliers. The claim is that the previous optimization problem
can be written as the following min-max of the Lagrangian:

min
w

max
α

L(w,α)

where the minimum is over all w ∈ IRn and the maximum is over all α ∈ IRm with αi ≥ 0
for all i.

2.4 Manipulating min-max

Intuitively, min-max is like a game played by 2 players: Mindy, who has control over the w
variable and wants to minimize the function, and Max, who has control over the α variable
and wants to maximize the function. Mindy first chooses w to minimize the function, then
Max chooses α to maximize the function knowing w. If they were to actually play, Mindy
might choose w such that bi(w) < 0 for some i, but then Max could set the corresponding
αi to an arbitrarily large value (or infinity) so that L will also be arbitrarily large or infinite.
Therefore, Mindy will not choose w to make any bi(w) < 0. If bi(w) = 0 then the quantity
αibi(wi) = 0 and αi is irrelevant, and if bi(w) > 0 then Max will maximize the function
by setting αi = 0. Since αibi(w) = 0 for all i, the Lagrangian will simply be equal to the

4

original objective 1
2 ||w||

2. So in summary, Mindy will choose w so that bi(w) ≥ 0 for all i,
and among all such w, she will select the one for which the original objective is minimized.
Thus, the resulting min-max problem is equivalent to the original optimization problem.

One might wonder why this formulation is any more useful than the original optimization
problem. To this end, suppose that Mindy and Max play the game in the opposite order.
Intuitively,

max
α

min
w

L(w,α) ≤ min
w

max
α

L(w,α)

because playing second is at least as good as playing first. And for some special functions
L (roughly those convex in w and concave in α),

max
α

min
w

L(w,α) = min
w

max
α

L(w,α)

Fortunately, it turns out that this is one of those functions. So solving min-max also solves
max-min, and vice versa. But what does this tell us about solutions?

Let w∗ = arg minw maxα L(w,α), and let α∗ = arg maxα minw L(w,α). Then

L(w∗,α∗) ≤ max
α

L(w∗,α)

= min
w

max
α

L(w,α)

= max
α

min
w

L(w,α)

= min
w

L(w,α∗)

≤ L(w∗,α∗)

The first relationship holds because L(w∗, ·) evaluated at α∗ is at most the maximum
value of the function over all possible α; the second by the definition of w∗; the third by
the equality we just presented; the fourth by the definition of α∗; and the last because
L(·,α∗) evaluated at w∗ is at least the minimum value of the function over all possible w.
Because the beginning and end of this chain are equal, all of the inner inequalities must be
equalities. We now know that α∗ maximizes L(w∗, ·) and that w∗ minimizes L(·,α∗). As
a result, L(w∗,α∗) must be a saddle point of L.

2.5 Characterizing solutions to the Lagrangian optimization problem

Knowing that the solution to the Lagrangian optimization problem must be a saddle point,
the following conditions must hold for all w∗ and α∗:

∀i, j :
∂L(w∗,α∗)

∂(wj)
= 0, bi(w

∗) ≥ 0, α∗
i ≥ 0 , αibi(w

∗) = 0

These conditions are the Karush-Kuhn-Tucker (KKT) conditions, and the last three condi-
tions are referred to as complementary slackness. For our Lagrangian function,

∂L(w∗,α∗)

∂(wj)
= wj −

m∑
i=1

αiyixij = 0

We can then write the solution (the variable that we care about) as a linear combination of
the examples: w =

∑m
i=1 αiyixi.

5

How can we find the α values? Simply plug this w back into the original Lagrangian
to obtain the dual to the original optimization problem, which is an easily-optimized
paraboloid:

max
α

∑
i

αi −
1

2

∑
ij

αiαjyiyj(xi · xj), s.t. ∀i, αi ≥ 0

Additionally, complementary slackness tells us that αibi(w) = αi(yi(w · xi) − 1) = 0.
This implies that if αi 6= 0, then yi(w · xi) − 1 = 0 so yi(w · xi) = 1, i.e. xi has a margin
of exactly 1 and is a support vector. This means that w can be expressed as a linear
combination of only those examples that are support vectors. This is similar to problem
4 on homework 2, which explored the representation of hypotheses using subsets of the
sample. Using this information, and the bound proved on that homework problem, we can
obtain a bound on the generalization error of

Õ

(
k + ln(1/δ)

m

)
with probability at least 1− δ, where k is the number of support vectors. This alternative
method of analyzing support vector machines, in terms of the number of support vectors
rather than the margin, again yields a bound on the generalization error that is independent
of the number of dimensions n.

6

