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1 Margin for Boosting

Recall from the previous lecture that we proved that for the Adaboost algorithm, the
training error decreases exponentially fast in the number of rounds of boosting. We also
proved a bound on the generalization error in terms of the training error, number of rounds,
number of examples and VC dimension of the weak hypothesis space. However, Occam’s
razor seems to contradict the behavior of the Adaboost algorithm. As we keep increasing
the number of rounds T , we do not observe a worse generalization error even when training
error is already 0 as shown in Fig. 1. So in this lecture, we aim to give an explanation
about why Adaboost does not suffer from overfitting as we keep running the algorithm.

To understand what is happening, we need to consider the confidence in those predic-
tions. Intuitively, as we keep running Adaboost, the predictions made by the combined
classifier are getting more and more confident even if the training error remains the same.
That increased confidence translates into better generalization performance as well.

To make this idea rigorous, we need to define confidence. Recall that our combined
hypothesis makes predictions based on weighted majority vote. So the natural way to
measure the confidence is by looking at margin, which is the difference between the weighted
fraction of ht’s voting correctly and the fraction corresponding to those voting incorrectly.
So we have:

H(x) = sign(
T∑
t=1

αtht(x))

= sign(
T∑
t=1

atht(x))

where at = αt∑T
t′=1 αt′

. In this way, we are normalizing the weights for each hypothesis,

having at ≥ 0,
∑
at = 1. Then for an example x with correct label y, the margin is:

margin(x, y) =
∑

t:ht(x)=y

at −
∑

t:ht(x) 6=y

at

=
∑
t

at ·

{
+1, if ht(x) = y

−1, else

=
∑
t

atyht(x)

= y
∑
t

atht(x)

= yf(x)

where we define f(x) =
∑

t atht(x). Unlike the normal margin we use in the real election,
this margin has the sign. Its magnitude indicates the confidence as shown in Fig. 2.

In this lecture, we focus on showing that :



Figure 1: Error versus number of rounds of boosting

• The margins of examples tend to get larger as we keep running the boosting algorithm.

• Large margins on training examples results in better performance in generalization
error.

1.1 Boosting Increases Margins of Training Examples

Next, we want to bound how many training examples have margins that are below the given
value θ. We define P̂ rS as empirical probability with respect to training set S such that
S = 〈(x1, y1), . . . , (xm, ym)〉.

Theorem 1. For θ ≥ 0, we have

P̂ rS [yf(x) ≤ θ] =
1

m

m∑
i=1

1{yif(xi) ≤ θ}

≤
T∏
t=1

[
2

√
ε1−θt (1− εt)1+θ

]
Furthermore, if for some γ > 0 and ∀t, εt ≤ 1

2 − γ, then

P̂ rS [yf(x) ≤ θ] ≤
(√

(1− 2γ)1−θ(1 + 2γ)1+θ
)T

In particular, if θ < γ, then this quantity goes to 0 as T →∞.

The second inequality comes from ∀t : εt ≤ 1
2−γ (weak learning assumption). Note that

the last statement follows from the fact that the quantity inside the parentheses is strictly
smaller than 1 under the weak learning condition.

Proof. The proof is similar to the proof of training error.

Remark 1.1. By setting θ = 0 in the above theorem, we get the bound on training error
proven in the previous lecture such that

êrr(H) ≤
T∏
t=1

[
2
√
εt(1− εt)

]
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Figure 2: Diagram of margin

1.2 Large Margins on Training Set Reduce Generalization Error

Next, we define H as the weak hypothesis space and d = V Cdim(H). Also we find that
f(x) is a convex combination of h1, . . . , hT , so we define the convex hull of H to be

co(H) =
{
f : x 7→

T∑
t=1

atht(x)|a1, . . . , aT ≥ 0,
∑
t

at = 1, h1, . . . , hT ∈ H, T ≥ 1
}

Previously, we have shown that with probability at least 1− δ,

err(h) ≤ êrr(h) + Õ

(√
Td+ ln(1/δ)

m

)
We can rewrite this equivalently as

PrD[yf(x) ≤ 0] ≤ P̂ rS [yf(x) ≤ 0] + Õ

(√
Td+ ln(1/δ)

m

)
We don’t want it to depend on T to capture the lack of overfitting, but instead on a
parameter θ that we can relate to the margin.

We think of θ as an arbitrary cut-off, with margins considered large or small based on
whether they are above or below θ. We are then replacing the training error, which is the
same as the fraction of training examples with margin at most zero, with the fraction of
training examples with margin at most θ. But it is then inevitable that we must somehow
pay a penalty for choosing θ too close to zero, so that 1/θ2 ends up replacing T in the
bound.

Theorem 2. For θ > 0 and ∀f ∈ co(H), with probability at least 1− δ,

PrD[yf(x) ≤ 0] ≤ P̂ rS [yf(x) ≤ θ] + Õ

(√
d/θ2 + ln(1/δ)

m

)
To prove this theorem, there are three lemmas need to be proved first.

Lemma 3. Suppose that S = 〈x1, . . . , xm〉. Then the empirical Rademacher complexity of
H is given by

RS(H) ≤
√

2d ln( emd )

m
= Õ

(√ d

m

)
Proof. See an earlier class (lecture #10).
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Lemma 4. The Rademacher complexity of H is equal to the Rademacher complexity of its
convex hull. In other words, RS(co(H)) = RS(H)

Proof. RS(co(H)) ≥ RS(H) since H ⊆ co(H). Moreover,

RS(co(H)) = Eσ

[
sup

f∈co(H)

1

m

∑
i

σif(xi)
]

= Eσ

[ 1

m
sup

f∈co(H)

∑
i

σif(xi)
]

= Eσ

[ 1

m
sup

f∈co(H)

∑
i

σi
∑
t

atht(xi)
]

= Eσ

[ 1

m
sup

f∈co(H)

∑
t

at
∑
i

σiht(xi)
]

≤ Eσ
[ 1

m
sup

f∈co(H)
sup
h∈H

∑
i

σih(xi)
]

= Eσ

[ 1

m
sup
h∈H

∑
i

σih(xi)
]

= RS(H)

To obtain the fifth line we used the fact that
∑

t at = 1, and for the sixth line we note that
the expression in supf does not depend on f , so we could omit the supf function. Thus, we
have RS(co(H)) = RS(H).

Next, for any function φ : R→ R and f : Z → R, we define the composition φ◦f : Z → R
by (φ ◦ f)(z) = φ(f(z)). We also define the space of composite functions φ ◦ F = {φ ◦ f :
f ∈ F}. Now we want to find the Rademacher complexity of this space φ ◦ F .

Lemma 5. Suppose φ is Lφ-Lipschitz-continuous, that is, ∃Lφ > 0 such that ∀u, v ∈ R,
|φ(u)− φ(v)| ≤ Lφ|u− v|. Then RS(φ ◦ F) ≤ LφRS(F).

Proof. Please refer to Mohri et al.

We are now ready to prove the main theorem.

Proof. Define margf (x, y) = yf(x), which is the margin function associated with f that
maps a labeled example (x, y) to its margin under f . And define the space of all such
functions

M = {margf : f ∈ co(H)} = {(x, y) 7→ yf(x) : f ∈ co(H)}

Then

RS(M) = Eσ

[
sup

f∈co(H)

1

m

∑
i

(yiσi)f(xi)
]

= RS(co(H))

= RS(H)

Note that in the first line, since yi is +1 or −1, we can treat yiσi as a new Rademacher
random variable. And the last line is from Lemma 4.
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Figure 3: Diagram of φ(u)

We want to use the general result we earlier proved to prove our theorem, namely, that
with high probability,

∀g ∈ F , E[g] ≤ ÊS [g] + 2R̂S(F) +O().

So, define the function φ : R→ [0, 1] by

φ(u) =


1, if u ≤ 0

1− u/θ, if 0 < u ≤ θ
0, if u > θ

Fig. 3 shows φ(u). Then we have:

PrD[yf(x) ≤ 0] = ED[1{yf(x) ≤ 0}] ≤ ED[φ(yf(x))]

P̂ rS [yf(x) ≤ θ] = ÊS [1{yf(x) ≤ θ}] ≥ ÊS [φ(yf(x))]

Moreover, φ is Lipschitz-continuous with Lφ = 1
θ . Therefore, Lemma 3 and Lemma 5 give

us

RS(φ ◦M) ≤ LφRS(M) =
1

θ
RS(H) = Õ

(√
d

θ2m

)
By ED[f ] ≤ ÊS [f ] + 2RS(F) +O

(√
ln(1/δ)
m

)
, we have

PrD[yf(x) ≤ 0] ≤ ED[φ(yf(x))]

≤ ÊS [φ(yf(x))] + 2RS(φ ◦M) +O

(√
ln(1/δ)

m

)
≤ ÊS [φ(yf(x))] + Õ

(√
d

θ2m

)
+O

(√
ln(1/δ)

m

)
≤ P̂ rS [yf(x) ≤ θ] + Õ

(√
d

θ2m

)
+O

(√ ln(1/δ)

m

)
= P̂ rS [yf(x) ≤ θ] + Õ

(√
d/θ2 + ln(1/δ)

m

)
as desired.
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