
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture 11
Scribe: Yannis Karakozis March 12, 2018

Strong vs Weak PAC-Learning:

So far in this class, we have shown that if we can PAC-learn a concept class C, then we
can achieve a particular level of accuracy (ε) at a particular level of confidence (δ) by only
requiring a polynomial amount of data with respect to the levels of accuracy and confi-
dence. However, in real life, we do not have an infinite amount of data to achieve 100%
accuracy with 100% confidence. In particular, a lot of the time, our algorithms can reliably
achieve only a low level of accuracy with high confidence. Therefore, a natural question
to ask is, if we manage to develop a weak-learner, i.e. an algorithm that can learn C (i.e.
reliably perform better than unbiased coin flips), but with a low level of accuracy, how can
we automatically and reliably generate a strong learner, an algorithm that can achieve high
accuracy with high confidence?

In this lecture, we will examine a boosting algorithm that achieves this goal. To understand
how this algorithm work, we have to distinguish between two types of PAC-learning:

Definition: A concept class C is strongly PAC-learnable if there exists an algorithm A

such that, ∀c ∈ C, ∀D, ∀ε > 0, ∀δ > 0, if A is given m = poly(1δ ,
1
ε) examples, then it

outputs h such that:
P (errD(h) ≤ ε) ≥ 1− δ

Definition: A concept class C is weakly PAC-learnable if ∃γ > 0, there exists an algorithm

A such that, ∀c ∈ C, ∀D, ∀δ > 0, if A is given m = poly(1δ) examples, then it outputs h
such that:

P (errD(h) ≤ 0.5− γ) ≥ 1− δ

The big difference between the two definitions are the terms γ and ε that measure error.
So the link we are trying to achieve is whether an algorithm that can achieve a fairly low
level of accuracy reliably for all concepts c and distributions D can be “boosted” into an
algorithm that can do the same for arbitrarily high levels of accuracy when given enough
samples. If we also consider algorithmic efficiency, then our final goal becomes finding an
efficient boosting algorithm that boosts a weak learner into a strong learner, so that if the
weak learner is efficient, then the strong learner that results from applying boosting will
also be efficient. This means that either a concept class is learnable “all the way”, or it is
not learnable at all, not even partially.

Boosting - The Theorem:

Theorem: A concept class C is weakly PAC-learnable if and only if it is strongly PAC-
learnable.

This theorem implies that learning is an all or nothing phenomenon. In other words, if you
can find an algorithm that achieves a low level of accuracy in learning C, then there exists
an algorithm that can do the same with a high level of accuracy.

The goal is to now prove the Theorem while working under the distribution-free model. In
other words, we will show that, assuming the existence of a weak learning algorithm, we
can develop a strong learning algorithm, without making any assumptions on D, by taking
advantage of the fact that the weak learner must be effective for every target distribution
D. The reverse direction trivially follows.

Boosting - Proof Setup:

Assume we are given random sample S = 〈(x1, y1), ..., (xm, ym)〉, where ∀i, xi ∈ X, yi ∈
{−1,+1} and (xi, yi) ∼ D. Assume we also have access to a weak-learner A (i.e. an algo-
rithm that can weakly PAC-learn the target class C, according to the definition above).

A good way of thinking about A is as an algorithm, such that, ∀D, ∀δ > 0, when given
m = poly(1/δ) examples from D, it computes a hypothesis h such that, given a fixed γ:

P (errD(h) ≤ 0.5− γ) ≥ 1− δ

What we need to do now is identify a boosting algorithm that, using A, finds a boosted
hypothesis H such that errD(H) ≤ ε. The trick we will use is the fact that A generates a
weak hypothesis h for any distribution D, so we can create different distributions Dt such
that we generate multiple weak ht to ultimately combine them into a stronger hypothesis
H.

The AdaBoost Algorithm:

The boosting algorithm we will consider and prove the Theorem for is AdaBoost. Here are
the steps of AdaBoost:

0. Take in input sample S = 〈(x1, y1), ..., (xm, ym)〉. Define D1(i) = 1
m ,∀i. Pick the

number of iterations T . Then, for t = 1, ..., T repeat the following steps:

1. Run A on Dt to get weak hypothesis ht : X → {−1, 1}. We can achieve this because
of the distribution-free assumption of weak PAC-learning.

2. Compute the generalization error on S: εt = errDt(ht) =
∑

i:ht(xi)6=yi Dt(i). We also
write errDt(ht) as 0.5 − γt. We call the term γt the “edge”, as it measures how far
away the error is from the average error of an unbiased coin-hypothesis.

3. Compute αt = 1
2 ln(1−εtεt

) > 0.

2

4. Update probability distribution over S:

Dt+1(i) =
Dt(i) · e−αtht(xi)yi

Zt

where Zt is the normalization factor Zt =
∑m

i=1Dt(i) · e−αtht(xi)yi . Dividing by Zt
gives us back a probability distribution over S.

Once the algorithm terminates, compute the combined hypothesisH(x) = sign(
∑T

t=1 αtht(x)).
Note that H is a weighted majority vote over the weak hypotheses, since:

H(x) = sign

(
T∑
t=1

αtht(x)

)
= sign

(
T∑
t=1

αt
||α||1

ht(x)

)
where ||α||1 =

∑T
t=1 αt. Thus, it is a linear threshold function in T dimensions.

At every iteration t, Dt is a distribution over S. Dt(i) is equal to the probability measure
P ((x, y) = (xi, yi)) assigned to each example (xi, yi) of S.

The reasoning behind the choice of αt becomes evident in the proof to follow. The intuition
behind step 4 is that the booster wants to penalize the weak learner more if it misclassifies
examples that it has misclassified in the past. To achieve that, on each round, it increases
the weight of examples that are misclassified on that round, and decreases the weight of
examples that are correctly classified. This makes the classifier better at learning how to
classify correctly “hard” examples, which account for most errors.

AdaBoost - Training Error Bound:

To complete the proof of the initial Theorem, we need to show that for the hypothesis H
produced by AdaBoost, errD(H) ≤ ε. To do that, we will first prove the following bound
on the training error:

Theorem 2: For AdaBoost, ˆerr(H) ≤
∏T
t=1(2

√
εt(1− εt)) =

∏T
t=1(

√
1− 4γ2t) ≤ e−2

∑T
t=1 γ

2
t

Before we prove this Theorem, let’s consider its implications. Note that, if ∀t : γt ≥ γ, then

e−2
∑T

t=1 γ
2
t ≤ e−2γ

2T . This implies that the training error is going down exponentially fast
in the number of rounds T . This is consistent with the behavior of the training error we
saw in the examples of the slides.

Proof:
Step 1: Consider the final distribution DT+1 defined on S:

∀i,DT+1(i) = D1(i) ·
e−a1h1(xi)yi

Z1
· ... · e

−αthT (xi)yi

ZT
=
e−yi

∑T
t=1 αtht(xi)

m
∏T
t=1 Zt

=
e−yiF (xi)

m
∏T
t=1 Zt

where F (x) =
∑T

t=1 αtht(x). This equation results by unwrapping the recurrence that

3

defines Dt+1 in terms of Dt. Thus, we have just shown that:

∀i : DT+1(i) =
e−yiF (xi)

m
∏T
t=1 Zt

.
Step 2: Consider now ˆerr(H), the training error of H on S:

ˆerr(H) =
1

m

m∑
i=1

1{H(xi) 6= yi} ≤
1

m

m∑
i=1

e−yiF (xi)

The inequality follows from the fact 1{H(xi) 6= yi} = 1{yiF (xi) ≤ 0} ≤ e−yiF (xi). In
particular:

yiF (xi) > 0 =⇒ ∀a ∈ IR : 1{yiF (xi) ≤ 0} = 0 < ea =⇒ 1{yiF (xi) ≤ 0} < e−yiF (xi)

yiF (xi) ≤ 0 =⇒ ∀a ≤ 0 : 1{yiF (xi) ≤ 0} = 1 ≤ e−a =⇒ 1{yiF (xi) ≤ 0} ≤ e−yiF (xi)

Thus, by step 1, it follows that:

ˆerr(H) ≤ 1

m

m∑
i=1

(
DT+1(i) ·m

T∏
t=1

Zt

)
=

(
T∏
t=1

Zt

)
·

(
m∑
i=1

DT+1(i)

)
=

T∏
t=1

Zt

The sum goes away on the third equality because we sum over the probability measures
of all possible outcomes as defined by distribution DT+1(i) on S.

Step 3: All we need to do now is compute Zt:

Zt =
m∑
i=1

Dt(i) · e−αtht(xi)yi

=
∑

i:yi 6=ht(xi)

Dt(i) · eαt +
∑

i:yi=ht(xi)

Dt(i) · e−αt

= eαtεt + e−αt(1− εt)

Now our goal is to minimize the right hand side of the equality to get the tightest upper
bound possible for ˆerr(H). This minimization yields αt = 1

2 ln(1−εtεt
), which is exactly

the αt term used in the AdaBoost algorithm. This yields:

Zt = 2
√
εt(1− εt)

The results of steps 2 and 3 complete the proof. �

4

AdaBoost - Generalization Bound:

Now that we have bounded the training error of AdaBoost, we can use what we have already
proven in class these past weeks to prove a bound for the generalization error to complete
the proof of the initial Theorem. It is payoff time!

Since all of the generalization bounds we have proven require some measure of the complexity
of the hypothesis space, we need to measure the complexity of H(x). To do so, we will
rewrite H(x) as follows:

H(x) = sign

(
T∑
t=1

αtht(x)

)
= g(h1(x), ..., hT (x))

where g(z1, ..., zT) = sign(
∑

t αtzt). Note that g is a linear threshold function in T dimen-
sions. Let G be the class of all linear threshold functions in T dimensions and let H be
the hypothesis space of all ht, t = 1, ..., T , since all hypotheses generated from algorithm A
come from the same hypothesis space. Let F be the hypothesis space of H. Then, from
the theorem proven in HW2, Problem 2, it follows that:

ΠF (m) ≤ ΠG(m) · (ΠH(m))T

Note that V Cdim(G) = T and let V Cdim(F) = d. Thus, using the VC-dimension bound
for the growth function we proved in a previous lecture, we get:

ΠF (m) ≤
(em
T

)T
·
(em
d

)dT
This in turn yields:

err(H) ≤ ˆerr(H) +O

(√
ln(ΠK(m)) + ln(1/δ)

m

)
≤ ˆerr(H) + Õ

(√
Td+ ln(1/δ)

m

)

where Õ stands for a soft O-bound that ignores log terms multiplied by polynomial terms.

An important thing to note is that Td is a measure of the complexity of the final hypothesis
H. This intuitively makes sense since we are combining T weak hypotheses, each of which
has complexity d, as measured by their VC-dimension.

This completes the proof of the initial Theorem. �

5

Conclusions:

The generalization bound we just proved predicts that, for not very large T , the general-
ization error decreases. However, once T becomes sufficiently big, the O-term grows faster
than the training error decreases, indicating that the generalization error increases. This is
consistent with Ocamm’s razor that states that simpler hypotheses attain lower generaliza-
tion error. This behavior is exhibited graphically in the figure below.

What is very interesting though is that this is not always the case in practice. In fact,
in many application of Boosting, we see the generalization error decreasing even for very
large T . Examples of this odd behavior are included in the slides accompanying these notes.

So is Ocamm’s razor flawed? Or are all these applications of Boosting misguided? Answers
about these questions and the paradox seemingly contradicting Ocamm’s razor are given in
the next lecture.

6

