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1 Fixed Hypothesis Space

The following theorem presents a generalization bound for the error when |H| is finite.

Theorem 1. Given m random examples from a distribution D, with probability 1− δ, the
following holds for all h ∈ H:

|errD(h)− êrr(h)| ≤ ε

if m = O(
ln |H+ln( 1

δ
)|

ε2
).

Proof. To prove this theorem, we use a method similar to previous proofs - we bound the
term for a fixed h ∈ H, and use union bound to bound the probability that any h does
not satisfy the required condition. Using Hoeffding’s inequality, we know that for a fixed
h ∈ H,

Pr[|errD(h)− êrr(h)| > ε] ≤ 2e−2ε
2m

Using union bound,

Pr[∃h ∈ H, |errD(h)− êrr(h)| > ε] ≤ 2|H|e−2ε2m

We want this to be less than δ. Solving for m, we get

m = O(
ln |H+ ln(1δ )|

ε2
)

These uniform convergence bounds show that we can expect to get good generalization
error, when the training error is low. We also observe the following :

• We notice that, in comparison to the consistent case, this bound is significantly worse
- we require O( 1

ε2
) samples to get similar generalization error, compared to O(1ε )

examples in the consistent case, and the rate of convergence of the additional error is
O( 1√

m
) as opposed to O( 1

m).

• This is mainly due to the use of Hoeffding’s inequality - the ε2 term carries over to
the bounds on m. Moreover, this inequality is tight if the error is close to 1

2 . The
bound using relative entropy that was proved in the last class captures this intuition:
RE(p+ ε||p) is close to ε2 if p is close to 1

2 , and is close to ε if p tends to either 0 or 1.



1.1 Dependence of error on training error, complexity and number of
examples

In most cases, we only care about providing an upper bound on the generalization error.
Theorem 1 gives us the following:
With high probability, ∀h ∈ H,

err(h) ≤ êrr(h) +O



√

ln |H|+ ln(1δ )

m




If we view ln |H| as a complexity measure of the hypothesis space, we see that this equation
demonstrates how the error depends on

• The training error: The lower the training error, the lower the error

• The complexity of H, as measured by ln |H|: The more complicated the hypothesis is,
the more likely we are to overfit the data, causing the generalization error to increase.

• The number of examples: Clearly, the more training examples we have, the better our
hypothesis actually fits the distribution.

This bound also demonstrates the tradeoff between how well we fit the training data, versus
how complicated our hypothesis space is. Figure 1 demonstrates this tradeoff. Increasing
the complexity of the hypothesis allows us to reduce the training error. Initially, this lowers
the generalization error as well, but eventually, the complexity of the hypothesis becomes
too large, causing the generalization error to increase. This is often called overfitting.
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Figure 1: Tradeoff between error and complexity

2 Rademacher Complexity

In the consistent model, we have used various ways to measure the complexity of the
hypothesis space, like the size of the hypothesis class, the growth function and the VC
dimension. In the remaining of this lecture and the following lecture, we will discuss a new
method to measure the complexity of a hypothesis space.
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We first remap the labels of our samples from {0, 1} to {−1, 1}. Hence, we have a
set S = 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉 all drawn independently from a distribution D on
(X × {−1, 1}). Given a fixed hypothesis h : X → {−1, 1}, a natural question to ask is how
well this hypothesis fits the data, and we have used êrr(h) to measure this.

Over the new labels, we can re-write êrr(h) in an easier way:

êrr(h) =
1

m

m∑

i=1

1{h(xi) 6= yi}

=
1

m

m∑

i=1

(
1− yih(xi)

2

)

=
1

2
− 1

2m

m∑

i=1

yih(xi)

⇒ 1

m

m∑

i=1

yih(xi) = 2

(
1

2
− êrr(h)

)

= 1− 2êrr(h)

Hence, we can measure how well a hypothesis space H fits the data set by finding the
minimum error possible over all h ∈ H or equivalently by finding the maximum possible
value of 1

m

∑m
i=1 yih(xi). Mathematically, we can measure how well H fits the dataset using

max
h∈H

1

m

m∑

i=1

yih(xi)

We now consider the following experiment - rather than using the given labels, we use
pure random noise. That is, we replace the yi’s with independent random variables σi’s,
called the Rachemacher random variables, where

σi =

{
1 with probability 1

2
−1 with probability 1

2

We consider the following quantity:

R = Eσ

[
max
h∈H

1

m

m∑

i=1

σih(xi)

]

The intuitive idea of this definition is that if the hypothesis class is rich, random labels can
be fit reasonably well by this class. Hence, minimizing the training error by too much could
lead to overfitting.

As a sanity check, we compute R for extreme values of H.

• Suppose |H| = 1. In this case, we know that the maximum is achieved by the only
element in H = {h}

R = Eσ

[
1

m

m∑

i=1

σih(xi)

]

=
1

m

m∑

i=1

E[σi]h(xi)

= 0
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• Suppose S is shattered by H. In this case, we know that for all values of σ, there is
an h ∈ H which correlates perfectly. Hence, R = 1.

We notice that R is at least 0 (since E(max f) ≥ max(E[f ])), and at most 1.
We change our definition to work with arbitrary real valued functions. Let F be a family

of functions, where each f ∈ F is defined from some set Z to R, that is, f : Z → R. Our set
S = 〈z1, z2, . . . , zm〉 is a set of independent samples from S drawn from some distribution
D. We define the empirical Rademacher complexity as

R̂S(F) = Eσ

[
sup
f∈F

1

m

m∑

i=1

σif(zi)

]

We define
Rm(F) = ES [R̂S(F)]

as the expected Rademacher complexity. Intuitively, the Rademacher complexity measures
how likely a hypothesis class is to overfit a dataset.

We want to prove a uniform convergence result for functions from F . That is, we want to
show that, with high probability, ∀f ∈ F , 1

m

∑m
i=1 f(zi) converges to Ez∼D[f(z)]. Formally,

we prove the following theorem. Let ÊS [f ] = 1
m

∑m
i=1 f(zi) and E[f ] = Ez∼D[f(z)].

Theorem 2. Let S = 〈z1, z2, . . . , zm〉 be random variables drawn independently at random
from a distribution D. Let F be a family of functions defined from Z to [0, 1]. With
probability at least 1− δ, for all f ∈ F ,

E[f ] ≤ ÊS [f ] + 2Rm(F) +O



√

ln 1
δ

m




In terms of the empirical Rademacher complexity, we have

E[f ] ≤ ÊS [f ] + 2R̂S(F) +O



√

ln 1
δ

m




Moreover, the term O

(√
ln 1

δ
m

)
is generally of a lower order (in both bounds) than the

Rademacher complexity.

Proof. We notice that, in order to make a claim about all f ∈ F , it suffices to bound

Φ(S) = sup
f∈F

(
E[f ]− ÊS [f ]

)

Step 1
Φ(S) is a random variable, which is hard to work with. Instead, we would prefer to work
with ES [Φ(S)], where the expectation is taken over all possible samples S ∼ Dm. We can
do this provided that Φ(S) is not too far from its expected value. Hence, we first show that
with probability at least 1− δ,

Φ(S) ≤ ES [Φ(S)] +

√
ln 1

δ

2m

To do so, we use McDiarmid’s inequality. To use the inequality, we need to ensure that
Φ(S) has the following properties:
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• It must be a function of independent random variables. Since

Φ(S) = Φ(z1, z2, . . . , zm)

and z1, z2, . . . zm are all independent, this condition is satisfied.

• Perturbation of any one random variable does not change the value of the function.
That is, we need to show that

|Φ(z1, z2, . . . , zi, . . . , zm)− Φ(z1, z2, . . . , z
′
i, . . . , zm)|

is bounded. However, since changing zi to z′i changes ÊS [f ] by at most 1
m ,

|Φ(z1, z2, . . . , zi, . . . , zm)− Φ(z1, z2, . . . , z
′
i, . . . , zm)| ≤ 1

m

Applying McDiarmid’s inequality immediately gives us the desired result.

Step 2
We see that E[f ] is hard to work with, whereas ÊS [f ] is much easier to work with. We use
the double sample trick, where we choose a ghost sample S′ = 〈z′1, z′2, . . . , z′m〉 independently

from Dm. We need to show that we can use ÊS′ [f ] rather than E[f ], and hence, we want
to prove that

ES [Φ(S)] ≤ ES,S′

[
sup
f∈F

(ÊS′ [f ]− ÊS [f ])

]

We first make the following observations:

ES′ [ÊS′ [f ]] = E[f ]

ES′ [ÊS [f ]] = ÊS [f ]

The first is simply due to the definition of E[f ], whereas the second is because the expec-
tation is taken over the ghost sample S′, and ÊS [f ] does not depend on S′.

Hence, we get

ES [Φ(S)] = ES

[
sup
f∈F

(E[f ]− ÊS [f ])

]

= ES

[
sup
f∈F

(ES′ [ÊS′ [f ]]− ES′ [ÊS [f ])

]

= ES

[
sup
f∈F

(ES′ [ÊS′ [f ]− ÊS [f ]])

]

In general, it can be shown that sup(E[f ]) ≤ E[sup f ]. Hence,

ES [Φ(S)] = ES

[
sup
f∈F

(ES′ [ÊS′ [f ]− ÊS [f ]])

]

≤ ES

[
ES′ [sup

f∈F
(ÊS′ [f ]− ÊS [f ])]

]

≤ ES,S′

[
sup
f∈F

(ÊS′ [f ]− ÊS [f ])

]
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Given the symmetric nature of the equation, for large enough m, we expect this difference
to be small, for all functions f ∈ F .

Step 3
Similar to proving the generalization bound in the consistent model, we randomly swap
entries from S and S′. That is, for each i ∈ [m], we swap zi and z′i with probability 1

2 ,
independently. The rest of the proof will be covered in Lecture 10.

6


