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1 Review of The Learning Setting

Last class, we moved beyond the PAC model: in the PAC model we assumed that the data
is labeled according to some function, the concept c from some known concept class C. In
our new setting, the data and labels could certainly be correlated, but we are no longer
assuming the same data is always labeled identically.

In our new setting, we assume that our data points and labels come in pairs (x, y), and
the pairs (x, y) are drawn from a distribution D. As in PAC, x is from a domain X and
y ∈ {0, 1}. Our “true” error measurement of a hypothesis h is errD(h) = Pr(x,y)∼D[h(x) 6= y]
because both examples and labels come from a distribution D. Our random “training”
sample is a set of random samples S = 〈(x1, y1), . . . , (xm, ym)〉 which we provide to our
learning algorithm. The training error (denoted ˆerr(h)) of a hypothesis h is the fraction of
examples from S that it misclassifies:

ˆerr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi}

where 1{·} equals 1 if its argument (in this case, h(xi) 6= yi) is true, and equals 0 otherwise.
In our previous PAC setting, we were interested in consistent hypotheses, those whose

training error is zero. In our current setting, such a consistent hypothesis may not exist, so
we are instead interested in the hypothesis ĥ which minimizes the training error. That is,
ĥ = arg minh∈H ˆerr(h). This approach is called “empirical risk minimization” (ERM).

If we can show that, with high probability, the training error of every hypothesis is
within ε of its “true” error, this is called “uniform convergence”. In other words, uniform
convergence is when, with probability ≥ 1−δ, ∀h ∈ H : |errD(h)− ˆerr(h)| ≤ ε. Last lecture,
we showed that if uniform convergence is true, then ∀h ∈ H we know with probability ≥ 1−δ
that errD(ĥ) ≤ minh∈H errD(h) + 2ε. In other words, if uniform convergence is true, then
we know that with high probability, the error of ĥ (the hypothesis returned by ERM, which
minimizes the training error) is at most 2ε more than the true error of the best hypothesis
in H.

2 Overview

Thus, if we can prove uniform convergence in a given training setting, we will have a valuable
bound on how well the ERM hypothesis ĥ performs relative to the truly best hypothesis in
the hypothesis class H. In proving a bound for ERM, uniform convergence is the difficult
thing to prove, so this lecture focuses on proving uniform convergence. We will begin by
trying to prove convergence for a single given hypothesis. In the process, we discuss helpful
Chernoff bounds including Hoeffding’s Inequality, and we will touch on relative entropy to
help us understand Chernoff bounds. Then, we apply Hoeffding’s Inequality to derive a
useful bound on the ERM hypothesis, and finally we touch on a more general version of
Hoeffding’s Inequality, called McDiarmid’s Inequality.



3 Convergence for a Single Hypothesis

To prove uniform convergence, we first consider convergence for a single hypothesis. That
is: given a hypothesis h, can we prove that the training error of h is probably close to the
true error of h?

We are interested in the indicator variable 1{h(x) 6= y} (whether h is incorrect on an
example (x, y)). For a random (x, y) ∼ D, 1{h(x) 6= y} equals 1 with probability errD(h)
and equals 0 otherwise. When estimating the true error based on training error, we are only
interested in how often h is incorrect, rather than the details of what the examples (x, y)
look like. Consider a coin that lands heads with probability errD(h) and tails otherwise.
Since the examples are randomly drawn from a distribution D, each time we draw a sample
it is like flipping that coin. Thus, for a single h, trying to estimate the true error of h from
the training error of h is essentially like estimating the bias of that coin based on a sample
of flips! Let’s drill down to this kind of problem.

Let us represent the coin flips as random variables X1, . . . , Xm which are i.i.d., where
Xi can take values 0 or 1. We’re interested in estimating the probability p = E[Xi] of
getting 1 on any given flip. (Since the Xi are i.i.d. E[Xi] is the same for all i.) Based on
our m samples X1, . . . , Xm, our natural estimate of p is p̂ = 1

m

∑m
i=1Xi, the proportion of

examples that are equal to 1. How good is p̂ compared to p?
Because Xi are random variables, p̂ is a random variable. We can imagine the distri-

bution of p̂ as some distribution between 0 and 1, with the distribution of p being roughly
centered at p. We’re interested in how quickly p̂ converges to p: the probability Pr[p̂ ≥ p+ε]
and Pr[p̂ ≤ p− ε]. Theorems concerning this rate of convergence are sometimes called “tail
bounds” or “concentration inequalities”.

4 Hoeffding’s Inequality

Let us begin with Hoeffding’s Inequality1. Hoeffding’s Inequality states that

Pr[p̂ ≥ p+ ε] ≤ e−2ε2m

and similarly Pr[p̂ ≤ p − ε] ≤ e−2ε
2m. Why are we interested in Hoeffding’s Inequality?

Once we prove Hoeffding, we can use union bound to combine the two bounds to show that
Pr[|p̂ − p| ≥ ε] ≤ 2e−2ε

2m. If we set δ = 2e−2ε
2m, then solving for ε informs us that with

probability 1− δ,

|p̂− p| ≤
√

ln 2/δ

2m

This implies that p̂ converges to p at a rate of
√

1
m !

Applying this to learning, if we let Xi = 1{h(xi) 6= yi}, p = E[Xi] = errD(h), and
p̂ = 1

m

∑
iXi = ˆerr(h), then, with probability 1− δ:

|errD(h)− ˆerr(h)| ≤
√

ln 2/δ

2m

1Hoeffding’s Inequality is a “Chernoff bound”. A Chernoff bound is an exponentially decreasing tail
bound for distributions of sums of independent random variables, so Hoeffding’s Inequality is a special case
of a Chernoff bound.
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which is a bound on the difference between errD(h) and ˆerr(h) as we desired. Thus,
Hoeffding’s Inequality is pretty valuable.

Now we should prove Hoeffding’s Inequality, but first we will prove even better bounds,
from which Hoeffding’s Inequality is a special case. These bounds are:

Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)m

Pr[p̂ ≤ p− ε] ≤ e−RE(p−ε||p)m

where
RE(p+ ε||p)

is the “relative entropy” of p+ ε from p. In order to prove this bound, let’s discuss relative
entropy, also known as Kullback-Leibler divergence.

5 Relative Entropy

Relative entropy is an idea from information theory. Information theory ideas often arise in
machine learning because, broadly speaking, we’re often interested in how much information
is conveyed through the examples given to us.

We will illustrate relative entropy through an example. Suppose Alice wants to send
Bob a message in English. This problem boils down to deciding how to send one letter at
a time using bits, so we’d like to decide on an encoding from letters to bits. An obvious
option would be to use a code of equal length for every letter. Since there are 26 letters,
we’d need 5 bits. So we could encode A as “00000”, B as “00001”, and so on.

But this isn’t a smart way to do it. Some letters are more common than others, so if
we’re trying to reduce the message length in bits, we could encode common letters with
shorter codes and rarer letters with longer codes. For example, we could encode A as “00”
and Q as “011001”. The question is, if we’re trying to minimize message length, what is
the optimal way to encode letters as bits?

For a random message M , let each letter x appear with probability P (x). That is,
P (“A”) > P (“Q”) because A is more likely to appear in M than Q. The optimal encoding
turns out to use log2(

1
P (x)) bits for the letter x. (Ignore the fact that this isn’t an integer

for now: there are ways to get around that that we won’t discuss here.) Given this optimal
encoding, what is the expected encoded message length? It should be the expected length
of M when encoded. This is:

E[encoded length of M ] =
∑
x

P (x) log2(
1

P (x)
)

This value is known as the “entropy” of P , where P is the distribution of letters. However,
this description assumes that we know the distribution P before we start encoding. What
if we encoded the message based on our estimate Q of the distribution P? Q, too, is a
distribution of how often a letter appears in a message, and it may not be exactly equal
to P . Suppose we encode our message using Q, when the real distribution is P . Then,
the expected message length is

∑
x P (x) log2(

1
Q(x)). We want to compare this value to the

entropy
∑

x P (x) log2(
1

P (x)), so we find the difference between these two lengths and call
this the “relative entropy”. So, the relative entropy is:∑

x

P (x) log2(
1

Q(x)
)−

∑
x

P (x) log2(
1

P (x)
) =

∑
x

P (x) log2(
P (x)

Q(x)
)
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We will make a small substitution here, and use ln instead of log2. Natural log ln is
more common in machine learning, and only differs by a constant factor from log2.

One can prove that

RE(P ||Q) =
∑
x

P (x) ln
P (x)

Q(x)
≥ 0

so relative entropy is always non-negative. One can also prove that relative entropy is
positive unless P = Q: ∑

x

P (x) ln
P (x)

Q(x)
= 0 iff P = Q

Note that we define 0 ln 0 as 0, so in relative entropy we ignore letters whose probability
P (x) = 0. Also note that relative entropy is not a metric, because it is not symmetric.
That is, RE(P ||Q) 6= RE(Q||P ) in general. Sometimes, we are interested in the special case
where P (x) is over two outcomes, so it only has two probabilities p and 1 − p and Q only
has two probabilities, q and 1 − q. Then, the relative entropy is RE((p, 1 − p)||(q, 1 − q))
which is simplified as RE(p||q). Side note: The Alice/Bob message encoding scenario isn’t
particularly relevant to our purposes, but it is useful to illustrate the meaning of relative
entropy.

6 Proving Our Bounds

Let’s return to proving Pr[p̂ ≥ p + ε] ≤ e−RE(p+ε||p)m. We will use a surprisingly weak
inequality to accomplish this: Markov’s Inequality. Markov’s inequality states that, if some
random variable X ≥ 0, then

Pr[X ≥ t] ≤ E[X]

t

The proof uses the law of total probability:

E[X] = Pr[X ≥ t] E[X|X ≥ t] + Pr[X < t] E[X|X < t]

Since E[X|X ≥ t] ≥ t and Pr[X < t] ≥ 0 and E[X|X < t] ≥ 0, we find that

E[X] ≥ t · Pr[X ≥ t]

which yields Markov’s Inequality if we divide by t on both sides.2

Here’s a first try at a proof of Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)m using Markov’s Inequality:
Let q = p + ε. If we use Markov’s inequality immediately, we find that Pr[p̂ ≥ q] ≤

E[p̂]
q = p

q = p
p+ε , which is a true bound but not very useful, and doesn’t even depend on

m. To prove our desired result we do something clever before using Markov: we pass both
sides of the inequality through a strictly increasing fuction.

If f is strictly increasing, then p̂ ≥ q ⇐⇒ f(p̂) ≥ f(q). The key step is to let
f(x) = eλmx, where λ > 0 is a constant (we’ll pick it later). Before applying Markov, we
note that Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq]. We now use Markov:

Pr[eλmp̂ ≥ eλmq] ≤ e−λmq · E[eλmp̂]

2Markov’s Inequality is pretty weak, as the following example illustrates. Suppose the average US
woman’s height is 5 feet and 4 inches, that is 64 inches. Then what fraction of women is at least
10 feet (120 inches) tall? Let X be the height of a US woman. Markov’s inequality tells us that

Pr[X ≥ 120] ≤ E[X]
120

= 64
120

≈ 53%, which is true but quite a weak bound, of course.
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Now we simplify. Recall that p̂ =
∑

iXi · 1
m . Then,

E[eλmp̂] = E[eλm
∑

iXi· 1m ] = E[eλ
∑

iXi ] = E[
m∏
i=1

eλXi ] =
m∏
i=1

E[eλXi ]

In the last step above, we used the fact that the Xi are independent, so the eλXi are
also independent, meaning the expected value of the product is equal to the product of the
expected values. Next, let’s use an inequality: if 0 ≤ x ≤ 1, then eλx ≤ 1 − x + x · eλ.
Plugging this in, we find

E[eλmp̂] =

m∏
i=1

E[eλXi ] ≤
m∏
i=1

E[1−Xi +Xi · eλ]

=
m∏
i=1

(1− p+ p · eλ) = (1− p+ p · eλ)m

We plug this in to find that

Pr[p̂ ≥ q] ≤ e−λmq · (1− p+ p · eλ)m =
(
e−λq · (1− p+ p · eλ)

)m
and this is true for any λ. We want to find the value of λ that minimizes this value, so if
we think of

(
e−λq · (1−p+p · eλ)

)
= φ(λ) as a function φ(λ), we want to find the minimum.

Setting φ′(λ) = 0 yields the following value of λ to minimize φ(λ):

λ′ = ln

(
q(1− p)
(1− q)p

)
Plugging in and simplifying, we get: φ(λ′) = e−RE(q||p) so

Pr[p̂ ≥ q] ≤ e−RE(q||p)m

Finally, we plug in q = p+ ε to find

Pr[p̂ ≥ p+ ε] ≤ e−RE(p+ε||p)m

as desired, so we have proven the bound we set out to prove.
We claimed earlier that Hoeffding’s Inequality is a special case of the bound above. This

is true because it is possible to prove (we do not do it here) that RE(p+ ε||p) ≥ 2ε2, which
yields Hoeffding’s Inequality. Finally, let’s return to learning. Our resultant theorem is as
follows:

Let H be a finite hypothesis class (|H| <∞). Then, with probability ≥ 1− δ:

∀h ∈ H : |errD(h)− ˆerr(h)| ≤ ε

so long as we receive at least m examples where

m = O

(
ln |H|+ ln 1/δ

ε2

)
We omit the proof for lack of time. The proof is similar to the homework problems and

previous proofs, where we use our result for a single hypothesis h, along with union-bound,
to prove a result for the hypothesis class H.

5



7 McDiarmid’s Inequality

Having used Hoeffding’s Inequality, we should mention McDiarmid’s Inequality, a more
general form of Hoeffding. It was not used in our proofs today, but it is very useful.

With Hoeffding, we were interested in p̂, the average of X1, . . . , Xm. More abstractly,
we can think of p̂ as a function of X1, . . . , Xm so p̂ = f(X1, . . . , Xm) where f returns
the average. Now, what if f were some other function? We would want to prove that
f(X1, . . . , Xm) converges to E[f(X1, . . . , Xm)] just as we proved that p̂ converges to p when
p̂ is the average.

Proving this isn’t always possible, but it is possible in many cases. The specific case
that McDiarmid’s Inequality deals with is the case that changing one input of f doesn’t
change the value very much. That is, for any values x1, . . . , xm, if we replace xi with x′i,
the value doesn’t change by more than some constant ci:

|f(x1, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci

McDiarmid’s Inequality states that if the above condition holds for all x1, . . . , xm and x′i,
and the random variables Xi are independent, then we can bound the difference between
f(X1, . . . , Xm) and E[f(X1, . . . , Xm)] as follows:

Pr

[
f(X1, . . . , Xm) ≥ E[f(X1, . . . , Xm)] + ε

]
≤ exp

(
−2ε2∑m
i=1 c

2
i

)
And a similar bound for Pr

[
f(X1, . . . , Xm) ≤ E[f(X1, . . . , Xm)] − ε

]
. Note that McDi-

armid’s Inequality assumes that the Xi are independent, but not necessarily identically
distributed.

Hoeffding’s Inequality is a special case of McDiarmid’s Inequality, where ci = 1
m for all

i in the case of Hoeffding (because changing one of the Xi changes the average by at most
1
m since Xi ∈ {0, 1}). Unlike McDiarmid’s Inequality, Hoeffding’s Inequality assumes that
the Xi are identically distributed.
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