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1 Overview

For a hypothesis class H with VCdim(H) = d, what we showed in previous lectures implies
that m = O

(
1
ε (ln(1/δ) + d ln(1/ε))

)
is sufficient for PAC learning. In essence, this provides

an upper bound on sample complexity that is linear in the VC dimension. In this lecture,
we wish to prove that the VC dimension is also a lower bound on sample complexity, which
provides an insight into how much data is necessary for learning under a particular model.
To do this, we will consider the VC dimension of the concept class, as opposed to the
hypothesis class. The intuition is that if we don’t see enough points, then we have no
insight into the labeling of the remaining points. We will also talk about how to generalize
the PAC model to be more realistic.

2 A Lower Bound on Sample Complexity

In prior lectures we discussed the amount of data that was sufficient for learning. We
introduced the concept of VC-dimension, which gives insight into the expressiveness of a
hypothesis class. In the following section, let d denote the VC-dimension of the concept
class C. A given concept class C has VC dimension d if the size of the largest set that the
concept class can shatter is d. This means that all possible labellings can be realized on a
set of size d. This suggests that even if the learner sees part of a shattered set, the labels
on the remaining examples are still unpredictable. We will formally show that this is the
case.

2.1 A Plausible False Argument

We begin with a plausible attempt proving a lower bound based on the VC dimension.
However, the argument used turns out to be incorrect.

Theorem 1. (False) Any algorithm that sees less than or equal to d/2 examples has high
error under the PAC model.

We take the role of an adversary. Let D be a uniform distribution on d points z1, z2, . . . , zd
that form a shattered set. Train the algorithm A on a sample S with m ≤ d/2 examples,
labeled arbitrarily, and suppose it returns the hypothesis hA. As the adversary, choose c ∈ C
to be any concept which is consistent with the labels in S and such that c(x) 6= hA(x) for
points x 6∈ S. Observe that since the algorithm predicts incorrectly on the unseen examples,
and it sees at most half of the examples, we have

PD(c(x) 6= hA(x)) ≥ 1/2

Thus, we have shown that any algorithm A has error at least 1/2, if we only give it half of
the examples during training.



The problem with this argument is that if we pick the concept after determining hA, then
the concept depends on the sample and the algorithm. This is not allowed under the PAC-
learning model. Rather, the concept c must be chosen before the training set is randomly
chosen.

2.2 Theorem

We now give a correct argument proving a lower bound on sample complexity.

Theorem 2. For any algorithm A, there exists a c ∈ C and a distribution D such that if
A gets a sample of size ≤ d/2, then

PS(errD(hA) > 1/8) ≥ 1/8

This is equivalent to saying that if we want ε < 1/8 and δ ≤ 1/8 then we need m > d/2.
To show this, we choose c in a uniform way such that all possibilities in a shattered set are
equally likely.

Proof. Let C ′ ⊆ C consist of one “representative” for each labelling of the shattered set.
Let c ∈ C ′ be chosen uniformly at random.
Let D be uniform on the sampled set. Consider the following setups.

Experiment 1

• c is chosen at random, as above

• S is chosen at random according to D
and is labeled by c

• A computes hA from the sample S

• x, a test point, is chosen at random

• measure P (hA(x) 6= c(x))

Experiment 2

• unlabeled parts of S, x1, x2, . . . , xm,
are chosen according to D

• random labels c(xi) are computed for
xi ∈ S

• hA is computed from the labeled S

• a test point x is chosen.

• if x 6∈ S then the label c(x) is chosen
at random

• measure P (hA(x) 6= c(x))

These are experiments in a different order. This is because the relevant variables are c, S,
and x, and in both cases they are chosen independently of each other. Experiment 1 satisfies
the requirements of the PAC model, with c chosen before the sample S is generated. But
under Experiment 2, it is perhaps easier to see why the test label of x is hard to guess. As
such, we prove the theorem using the setup from Experiment 2.

Since what we measure in Experiment 2 is dependent on the variables c, S, x, we denote it
Pc,S,x(hA(x) 6= c(x). Observe that

Pc,S,x(hA(x) 6= c(x)) ≥ P (x 6∈ S ∧ hA(x) 6= c(x)) (1)

= P (x 6∈ S)P (hA(x) 6= c(x) |x 6∈ S) (2)

≥ 1/2 · 1/2 = 1/4 (3)
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Step (1) follows from the fact that x 6∈ S ∧ hA(x) 6= c(x) logically implies hA(x) 6= c(x).
Step (2) follows from the definition of conditional probability. Step (3) follows from the fact
that the first term is ≥ 1/2 since S is chosen uniformly and m ≤ d/2, and the second term
is 1/2 since the labels are chosen at random.

We wish to show that there exists some c ∈ C ′ such that PS(errD(hA) > 1/8) ≥ 1/8
where errD(hA) = Px(hA(x) 6= c(x)). To do this, we use marginalization, defined as
P (a) = Ex(P (a|x)). Observe that

Ec(PS,x(hA(x) 6= c(x)) = Pc,S,x(hA(x) 6= c(x)) ≥ 1/4

This implies that there exists some c such that PS,x(hA(x) 6= c(x)) ≥ 1/4. We can apply
marginalization again to see

ES(Px(hA(x) 6= c(x))) ≥ 1/4

Px(hA(x) 6= c(x) is the generalization error, err(hA). We have

1/4 ≤ ES(err(hA))

= PS(err(hA) > 1/8) · E(err(hA) | err(hA) > 1/8) + PS(err(hA) ≤ 1/8) · E(err(hA) | err(hA) ≤ 1/8)

≤ PS(err(hA) > 1/8) · 1 + PS(err(hA) ≤ 1/8) · (1/8)

≤ PS(err(hA) > 1/8) + 1/8

Thus, we have shown that PS(err(hA) > 1/8) ≥ 1/8, i.e., that the generalization error is at
least 1/8 with probability at least 1/8.

3 Generalizing the PAC Model

Often it is not possible to find hypotheses that are consistent with the training set. It may
be that the true concept is not in the hypothesis class, that it is computationally difficult to
find a consistent relationship, or that no functional relationship exists between the instances
and their labels. In the last case the relationship may be fundamentally probabilistic, as in
the case of the weather. This motivates adjusting the PAC learning framework.

Old Framework

• observe x, c(x) where x ∈ X and c ∈ C

• D on X

• errD(h) = Px∼D(h(x) 6= c(x))

New Framework

• observe x, y where (x, y) ∼ D

• D on X× {0, 1}

• errD(h) = P(x,y)∼D(h(x) 6= y)

In the new framework, we now have (x, y) ∼ D, where D is a distribution over X × {0, 1}.
To contrast the frameworks, observe that

P (x, y) = P (x) · P (y |x)

We note here that the probability distribution is with respect to D. We can think of (x, y)
being generated as a pair. On the right hand-side, we can think of x as being generated
first, and then the label y being generated probabilistically, dependent on x. Before, we
had P (y = 1 |x) = 0 or 1. In the new framework, it can take any value in [0, 1]. To handle
this new distribution of data, we needed to generalize the notion of error.
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3.1 Bayes Optimal Hypothesis

To better understand the error under the new framework, consider the question: if we don’t
restrict h, how small can the generalization error be?

As a toy example, consider flipping a coin that lands heads with probability p and tails
with probability 1− p. If we wanted to guess the outcome, the optimal prediction would be{

heads if p > 1/2

tails if p < 1/2

If p = 1/2, choosing either heads or tails would be optimal. Choosing deterministically is
optimal because there is nothing to be gained from choosing randomly on our part. This
suggests that in general, when assigning classifications through a hypothesis, the optimal
hypothesis hopt would be

hopt(x) =

{
1 if P (y = 1 |x) > 1/2

0 if P (y = 1 |x) < 1/2

This is known as the “Bayes optimal classifier” or “Bayes optimal decision rule.” The
“Bayes error” is the theoretical minimum error we can achieve

errD(hopt) = min
all h

errD(h)

3.2 PAC Learning

The Bayes error is helpful when it comes to understanding the new model. However, usually
people are not aiming to find the Bayes error, but rather simply the best hypothesis in a
given hypothesis class H, minh∈H errD(h).

Consider a sample S = 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉 where (xi, yi) ∼ D. We can de-
fine the empirical error of a hypothesis h ∈ H as

êrr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi}

and the optimal hypothesis over the sample as

ĥ = arg min
h∈H

êrr(h)

Suppose we could prove that the empirical error of h is approximately equal to its true
error, namely that

∀h ∈ H : |êrr(h)− err(h)| ≤ ε
This would be sufficient to prove that ĥ has low generalization error:

err(ĥ) ≤ êrr(ĥ) + ε by the assumption

≤ êrr(h) + ε ∀h, since ĥ = arg min
h∈H

êrr(h)

≤ err(h) + 2ε by the assumption

Since this is true for all h ∈ H, it is also true for the one with minimum generalization
error. Therefore, ĥ will have generalization error that is within 2ε of the best hypothesis in
H.

4


