Lecturer: Rob Schapire Scribe: Sulin Liu

Recap

Last time, we have the following theorem:

Theorem. With probability $\geq 1 - \delta$, $\forall h \in \mathcal{H}$ if h is consistent with sample (of size m), then

$$\operatorname{err}_{D}(h) \leq O\left(\frac{\ln \Pi_{\mathcal{H}}(2m) + \ln \frac{1}{\delta}}{m}\right).$$

For any \mathcal{H} we will see that only the following two cases are possible:

- $\Pi_{\mathcal{H}}(m) = 2^m$, bad case
- $\Pi_{\mathcal{H}}(m) = O(m^d)$, good case. In this case, we will have a generalization bound of the form:

$$\operatorname{err}_{D}(h) \leq O\left(\frac{d\ln\frac{m}{d} + \ln\frac{1}{\delta}}{m}\right),$$

where PAC-learning is possible if we make m large enough.

Today we will look into the combinatorial property of \mathcal{H} and define VC-dimension. We will derive bounds on the growth function in terms of VC-dimension and show the above is true.

1 VC-dimension

We first introduce the concept of shattering before defining VC-dimension.

Definition. (Shattering). A set S of size of m is shattered by \mathcal{H} if $|\Pi_{\mathcal{H}}(S)| = 2^m$, i.e. all possible labelings of the set S are realized by functions in \mathcal{H} .

Definition. (VC-Dimension). VC-dim $(\mathcal{H}) = cardinality of the largest set shattened by <math>\mathcal{H}$.

Note: VC refers to Vapnik and Chervonenkis.

Example. (Intervals) For the case when $\mathcal{H} = intervals$, it is illustrated in Figure 1 that \mathcal{H} can shatter S of 2 points but cannot shatter S of 3 points. Therefore, VC-dim(intervals) = 2.

Note: we can see that, we need to show VC-dim is at least some number d and then show that VC-dim is at most d to draw the conclusion that VC-dim = d. To show VC-dim is at least d, we need to find just one set of d points that are shattered (not for every set of d points). To show VC-dim is at most d, we need to show every set of d + 1 points is not shattered.

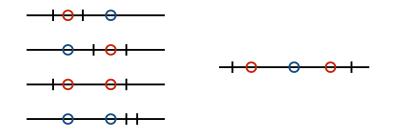


Figure 1: Left: Case for 2 points that all labelings are realized. Right: For any three points, when the middle point has "-" label and the other two have "+" labels, this means the interval must contain all three points, which means it can not be shattered.

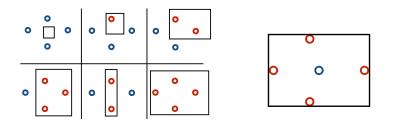


Figure 2: Left: A set of 4 points that can be shattered by axis-aligned rectangles. Right: For any 5-point set, we can choose the topmost, bottommost, leftmost and rightmost points and assign "+" to them, and the remaining point is assigned to "-". Any rectangle that contains the "+" points must also contain "-", which means this case cannot be shattered.

Example. (Axis-aligned Rectangles) For the case when $\mathcal{H} = axis$ -aligned rectangles, VCdim = 4. (Illustrated in Figure 2)

Example. VC-dim(hyper rectangles in \mathbb{R}^n) = 2n.

Example. VC-dim(linear threshold functions in \mathbb{R}^n) = n + 1, where linear threshold function is defined to be

$$f(\mathbf{x}) = \begin{cases} 1, & \mathbf{w} \cdot \mathbf{x} \ge b \\ 0, & \text{else} \end{cases}$$

Example. VC-dim(linear threshold functions through origin in \mathbb{R}^n) = n (b = 0 here).

Note: in the above cases we see that often VC-dim equals the number of parameters, but it is not always the case. For example, for the class of functions mapping real number x to sign(sin(ax)) with only one parameter a, its VC-dim is infinite.

Claim. Consider the finite \mathcal{H} case, we have d = VC-dim $(\mathcal{H}) \leq lg|\mathcal{H}|$.

Proof. For VC-dim of size d, there must exist a shattered set of size d, meaning there are 2^d ways of labeling that set. For every labeling, there must be a corresponding hypothesis, therefore we must have $2^d \leq |\mathcal{H}|$ for \mathcal{H} to shatter it.

1.1 Sauer's Lemma

After introducing the concept of VC-dimension, we will now prove Sauer's Lemma, which shows that the growth function $\Pi_{\mathcal{H}}(m)$ is of $O(m^d)$ when VC-dim $(\mathcal{H}) = d$ is finite.

Lemma. (Sauer's Lemma). Let \mathcal{H} be the hypothesis space, and $d = \text{VC-dim}(\mathcal{H})$, then $\Pi_{\mathcal{H}}(m) \leq \Phi_d(m) := \sum_{i=0}^d {m \choose i}$.

Note: $\sum_{i=0}^{d} {m \choose i}$ is the number of ways of choosing at most d items from set of size m. Some facts:

- $\binom{m}{k} = \frac{m(m-1)\cdots(m-k+1)}{k!} = O(m^k)$. This implies that $\Phi_d(m) = O(m^d)$.
- $\binom{m}{k} = \binom{m-1}{k-1} + \binom{m-1}{k}.$
- $\binom{m}{k} = 0$, if k < 0 or k > m.

Proof. By induction on m + d. First, check base case:

- m = 0, there is only one labeling possible, $\Pi_{\mathcal{H}}(m) = 1 = \sum_{i=0}^{d} {0 \choose i} = \Phi_d(0).$
- d = 0, there is only a single label possible for every point, $\Pi_{\mathcal{H}}(m) = 1 = \binom{m}{0} = \Phi_0(m)$.

When $d \ge 1$, $m \ge 1$, assume lemma holds $\forall d', m'$, if m' + d' < m + d.

Fix a set $S = \langle x_1, \dots, x_m \rangle$, we want to show $|\Pi_{\mathcal{H}}(S)| \leq \Phi_d(m)$. Next, we define \mathcal{H}_1 and \mathcal{H}_2 on $S' = \langle x_1, \dots, x_{m-1} \rangle$. Recall that $\Pi_{\mathcal{H}}(S)$ is the set of distinct labellings \mathcal{H} induces on S. Define \mathcal{H}_1 to consist of the set of distinct labellings \mathcal{H} induces on S'. Also, we add the labeling to \mathcal{H}_2 whenever there is a "collapse" of labelings from $\Pi_{\mathcal{H}}(S)$ to \mathcal{H}_1 , i.e. when there are two labelings in $\Pi_{\mathcal{H}}(S)$ which are only different on x_m . A distinct labeling on S' can be regarded as a hypothesis on S'.

Illustration of constructing \mathcal{H}_1 and \mathcal{H}_2 is given in Figure 3. We can see that by restricting on $S' = \langle x_1, x_2, x_3, x_4 \rangle$, we construct \mathcal{H}_1 by including all the different labelings on S'. In the construction, some pairs of labelings in $\Pi_{\mathcal{H}}(S)$ collapse into a single labeling in \mathcal{H}_1 , for example, from (0, 1, 1, 0, 0) and (0, 1, 1, 0, 1) to (0, 1, 1, 0), causing us to add (0, 1, 1, 0) to \mathcal{H}_2 .

We have the observation that $|\Pi_{\mathcal{H}}(S)| = |\mathcal{H}_1| + |\mathcal{H}_2|$. And we have the following claims: Claim: VC-dim $(\mathcal{H}_1) \leq d$.

If $T \subseteq S'$ is shattered by \mathcal{H}_1 , it is also shattered by \mathcal{H} . We can see from the example in Figure 3, $\{x_1, x_4\}$ are shattered by \mathcal{H}_1 and therefore also shattered in $\Pi_{\mathcal{H}}(S)$.

Claim: VC-dim $(\mathcal{H}_2) \leq d - 1$.

If $T \subseteq S'$ is shattened by \mathcal{H}_2 , $T \cup \{x_m\}$ is shattened by \mathcal{H} . In the example in Figure 3, pick $\{x_2\}$ that is shattened by \mathcal{H}_2 , we observe that $\{x_2, x_5\}$ are shattened by $\Pi_{\mathcal{H}}(S)$.

$\Pi_{\mathcal{H}}(S)$	x_1	x_2	x_3	x_4	x_5		\mathcal{H}_1	x_1	x_2	x_3	x_4		\mathcal{H}_2	x_1	x_2	x_3	x_4
	0	1	1	0	0	-		0	1	1	0	-		0	1	1	0
	0	1	1	0	1	-		0	1	1	1	-		1	0	0	1
	0	1	1	1	0	-		1	0	0	1	-					
	1	0	0	1	0	-		1	1	0	0	-					
	1	0	0	1	1	-											
	1	1	0	0	1	-											

Figure 3: An example of how \mathcal{H}_1 and \mathcal{H}_2 are constructed

From the above two claims, we have $|\mathcal{H}_1| = |\Pi_{\mathcal{H}_1}(S')| \leq \Phi_d(m-1)$ and $|\mathcal{H}_2| = |\Pi_{\mathcal{H}_2}(S')| \leq \Phi_{d-1}(m-1)$. Therefore we have,

$$|\Pi_{\mathcal{H}}(S)| = |\mathcal{H}_1| + |\mathcal{H}_2|$$

$$\leq \sum_{i=0}^d \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i}$$

$$= \sum_{i=0}^d \binom{m-1}{i} + \sum_{i=0}^d \binom{m-1}{i-1}$$

$$= \sum_{i=0}^d \left(\binom{m-1}{i} + \binom{m-1}{i-1}\right)$$

$$= \sum_{i=0}^d \binom{m}{i}$$

$$= \Phi_d(m)$$

Next, we will show an upper bound of $\Phi_d(m)$, which can be used to plug into the Theorem mentioned in the beginning and derive generalization bound for \mathcal{H} with finite VC-dim d.

Claim. $\Phi_d(m) \leq (\frac{em}{d})^d$, if $m \geq d \geq 1$.

Proof.

$$\left(\frac{d}{m}\right)^{d} \sum_{i=0}^{d} \binom{m}{i} \stackrel{(1)}{\leq} \sum_{i=0}^{d} \binom{m}{i} \left(\frac{d}{m}\right)^{i}$$
$$\leq \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^{i} 1^{m-i}$$
$$\stackrel{(2)}{\equiv} \left(1 + \frac{d}{m}\right)^{m}$$
$$\leq e^{d},$$

where (1) is because $0 < \frac{d}{m} \le 1, i \le d$ and (2) comes from binomial expansion. We then have $\Phi_d(m) \le (\frac{em}{d})^d$.

From Sauer's lemma and the above claim, we know there are only two cases for the growth function:

- VC-dim $(\mathcal{H}) = d$, $\Pi_{\mathcal{H}}(m) = O(m^d)$.
- VC-dim $(\mathcal{H}) = \infty$, $\Pi_{\mathcal{H}}(m) = 2^m$.

Plugging the result of Sauer's Lemma into the Theorem mentioned at the beginning of the class, we have

$$\operatorname{err}_{D}(h) \leq O\left(\frac{d\ln\frac{m}{d} + \ln\frac{1}{\delta}}{m}\right).$$

We can further turn it to a sample complexity bound (in other words, a bound on how much data m is needed to get error ϵ) that is linear in d, i.e. VC-dim(\mathcal{H}).