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Recap

Last time, we have the following theorem:

Theorem. With probability ≥ 1 − δ, ∀h ∈ H if h is consistent with sample (of size m),
then

errD(h) ≤ O

(
ln ΠH(2m) + ln 1

δ

m

)
.

For any H we will see that only the following two cases are possible:

• ΠH(m) = 2m, bad case

• ΠH(m) = O (md), good case. In this case, we will have a generalization bound of the
form:

errD(h) ≤ O

(
d ln m

d + ln 1
δ

m

)
,

where PAC-learning is possible if we make m large enough.

Today we will look into the combinatorial property of H and define VC-dimension. We
will derive bounds on the growth function in terms of VC-dimension and show the above is
true.

1 VC-dimension

We first introduce the concept of shattering before defining VC-dimension.

Definition. (Shattering). A set S of size of m is shattered by H if |ΠH(S)| = 2m, i.e. all
possible labelings of the set S are realized by functions in H.

Definition. (VC-Dimension). VC-dim(H) = cardinality of the largest set shattered by H.

Note: VC refers to Vapnik and Chervonenkis.

Example. (Intervals) For the case when H = intervals, it is illustrated in Figure 1 that H
can shatter S of 2 points but cannot shatter S of 3 points. Therefore, VC-dim(intervals)
= 2.

Note: we can see that, we need to show VC-dim is at least some number d and then
show that VC-dim is at most d to draw the conclusion that VC-dim = d. To show VC-dim
is at least d, we need to find just one set of d points that are shattered (not for every set of
d points). To show VC-dim is at most d, we need to show every set of d + 1 points is not
shattered.



Figure 1: Left: Case for 2 points that all labelings are realized. Right: For any three points,
when the middle point has “−” label and the other two have “+” labels, this means the
interval must contain all three points, which means it can not be shattered.

Figure 2: Left: A set of 4 points that can be shattered by axis-aligned rectangles. Right:
For any 5-point set, we can choose the topmost, bottommost, leftmost and rightmost points
and assign “+” to them, and the remaining point is assigned to “−”. Any rectangle that
contains the “+” points must also contain “−”, which means this case cannot be shattered.

Example. (Axis-aligned Rectangles) For the case when H = axis-aligned rectangles, VC-
dim = 4. (Illustrated in Figure 2)

Example. VC-dim(hyper rectangles in Rn) = 2n.

Example. VC-dim(linear threshold functions in Rn) = n+ 1, where linear threshold func-
tion is defined to be

f(x) =

{
1, w · x ≥ b
0, else

.

Example. VC-dim(linear threshold functions through origin in Rn) = n (b = 0 here).

Note: in the above cases we see that often VC-dim equals the number of parameters,
but it is not always the case. For example, for the class of functions mapping real number
x to sign(sin(ax)) with only one parameter a, its VC-dim is infinite.
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Claim. Consider the finite H case, we have d = VC-dim(H) ≤ lg|H|.

Proof. For VC-dim of size d, there must exist a shattered set of size d, meaning there are
2d ways of labeling that set. For every labeling, there must be a corresponding hypothesis,
therefore we must have 2d ≤ |H| for H to shatter it.

1.1 Sauer’s Lemma

After introducing the concept of VC-dimension, we will now prove Sauer’s Lemma, which
shows that the growth function ΠH(m) is of O(md) when VC-dim(H) = d is finite.

Lemma. (Sauer’s Lemma). Let H be the hypothesis space, and d = VC-dim(H), then
ΠH(m) ≤ Φd(m) :=

∑d
i=0

(
m
i

)
.

Note:
∑d

i=0

(
m
i

)
is the number of ways of choosing at most d items from set of size m.

Some facts:

•
(
m
k

)
= m(m−1)···(m−k+1)

k! = O(mk). This implies that Φd(m) = O(md).

•
(
m
k

)
=
(
m−1
k−1
)

+
(
m−1
k

)
.

•
(
m
k

)
= 0, if k < 0 or k > m.

Proof. By induction on m+ d. First, check base case:

• m = 0, there is only one labeling possible, ΠH(m) = 1 =
∑d

i=0

(
0
i

)
= Φd(0).

• d = 0, there is only a single label possible for every point, ΠH(m) = 1 =
(
m
0

)
= Φ0(m).

When d ≥ 1, m ≥ 1, assume lemma holds ∀d′,m′, if m′ + d′ < m+ d.
Fix a set S = 〈x1, · · · , xm〉, we want to show |ΠH(S)| ≤ Φd(m). Next, we define H1 and

H2 on S′ = 〈x1, · · · , xm−1〉. Recall that ΠH(S) is the set of distinct labellings H induces
on S. Define H1 to consist of the set of distinct labelings H induces on S′. Also, we add
the labeling to H2 whenever there is a “collapse” of labelings from ΠH(S) to H1, i.e. when
there are two labelings in ΠH(S) which are only different on xm. A distinct labeling on S′

can be regarded as a hypothesis on S′.
Illustration of constructingH1 andH2 is given in Figure 3. We can see that by restricting

on S′ = 〈x1, x2, x3, x4〉, we construct H1 by including all the different labelings on S′. In
the construction, some pairs of labelings in ΠH(S) collapse into a single labeling in H1, for
example, from (0, 1, 1, 0, 0) and (0, 1, 1, 0, 1) to (0, 1, 1, 0), causing us to add (0, 1, 1, 0) to
H2.

We have the observation that |ΠH(S)| = |H1|+ |H2|. And we have the following claims:
Claim: VC-dim(H1)≤ d.
If T ⊆ S′ is shattered by H1, it is also shattered by H. We can see from the example in

Figure 3, {x1, x4} are shattered by H1 and therefore also shattered in ΠH(S).
Claim: VC-dim(H2)≤ d− 1.
If T ⊆ S′ is shattered by H2, T ∪ {xm} is shattered by H. In the example in Figure 3,

pick {x2} that is shattered by H2, we observe that {x2, x5} are shattered by ΠH(S).
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ΠH(S) x1 x2 x3 x4 x5
0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

1 0 0 1 0

1 0 0 1 1

1 1 0 0 1

H1 x1 x2 x3 x4
0 1 1 0

0 1 1 1

1 0 0 1

1 1 0 0

H2 x1 x2 x3 x4
0 1 1 0

1 0 0 1

Figure 3: An example of how H1 and H2 are constructed

From the above two claims, we have |H1| = |ΠH1(S′)| ≤ Φd(m − 1) and |H2| =
|ΠH2(S′)| ≤ Φd−1(m− 1). Therefore we have,

|ΠH(S)| = |H1|+ |H2|

≤
d∑
i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)

=
d∑
i=0

(
m− 1

i

)
+

d∑
i=0

(
m− 1

i− 1

)

=
d∑
i=0

((
m− 1

i

)
+

(
m− 1

i− 1

))

=
d∑
i=0

(
m

i

)
= Φd(m)

Next, we will show an upper bound of Φd(m), which can be used to plug into the
Theorem mentioned in the beginning and derive generalization bound for H with finite
VC-dim d.

Claim. Φd(m) ≤ ( emd )d, if m ≥ d ≥ 1.

Proof. (
d

m

)d d∑
i=0

(
m

i

)
(1)

≤
d∑
i=0

(
m

i

)(
d

m

)i
≤

m∑
i=0

(
m

i

)(
d

m

)i
1m−i

(2)
=

(
1 +

d

m

)m
≤ ed,

where (1) is because 0 < d
m ≤ 1, i ≤ d and (2) comes from binomial expansion. We then

have Φd(m) ≤ ( emd )d.
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From Sauer’s lemma and the above claim, we know there are only two cases for the
growth function:

• VC-dim(H) = d, ΠH(m) = O(md).

• VC-dim(H) =∞, ΠH(m) = 2m.

Plugging the result of Sauer’s Lemma into the Theorem mentioned at the beginning of the
class, we have

errD(h) ≤ O

(
d ln m

d + ln 1
δ

m

)
.

We can further turn it to a sample complexity bound (in other words, a bound on how
much data m is needed to get error ε) that is linear in d, i.e. VC-dim(H).
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