COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #6
Scribe: Sulin Liu February 21, 2018
Recap

Last time, we have the following theorem:

Theorem. With probability > 1 — 6, Yh € H if h is consistent with sample (of size m),
then
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For any H we will see that only the following two cases are possible:
o 11y (m) = 2™, bad case
e I3 (m) = O (m%), good case. In this case, we will have a generalization bound of the

form:

dln™ 4+ 1ni
errp(h) <O <d5> ,
m
where PAC-learning is possible if we make m large enough.

Today we will look into the combinatorial property of H and define VC-dimension. We
will derive bounds on the growth function in terms of VC-dimension and show the above is
true.

1 VC(C-dimension

We first introduce the concept of shattering before defining VC-dimension.

Definition. (Shattering). A set S of size of m is shattered by H if [Ily(S)| = 2™, i.e. all
possible labelings of the set S are realized by functions in H.

Definition. (VC-Dimension). VC-dim(H) = cardinality of the largest set shattered by H.
Note: VC refers to Vapnik and Chervonenkis.

Example. (Intervals) For the case when H = intervals, it is illustrated in Figure 1 that H
can shatter S of 2 points but cannot shatter S of 3 points. Therefore, VC-dim(intervals)
=2.

Note: we can see that, we need to show VC-dim is at least some number d and then
show that VC-dim is at most d to draw the conclusion that VC-dim = d. To show VC-dim
is at least d, we need to find just one set of d points that are shattered (not for every set of
d points). To show VC-dim is at most d, we need to show every set of d + 1 points is not
shattered.



0}
0}

q
q

L_O o VN |

LI 4 7 AL
1 1
N\ ~7
Ll
7 A B |

Figure 1: Left: Case for 2 points that all labelings are realized. Right: For any three points,
when the middle point has “—” label and the other two have “+” labels, this means the
interval must contain all three points, which means it can not be shattered.
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Figure 2: Left: A set of 4 points that can be shattered by axis-aligned rectangles. Right:
For any 5-point set, we can choose the topmost, bottommost, leftmost and rightmost points
and assign “+” to them, and the remaining point is assigned to “—”. Any rectangle that
contains the “+” points must also contain “—”, which means this case cannot be shattered.

Example. (Axis-aligned Rectangles) For the case when H = axis-aligned rectangles, VC-
dim = 4. (Illustrated in Figure 2)

Example. VC-dim(hyper rectangles in R") = 2n.

Example. VC-dim(linear threshold functions in R™) = n+ 1, where linear threshold func-

tion is defined to be
1, w-x>0b
-]

0, else

Example. VC-dim(linear threshold functions through origin in R") =mn (b =0 here).

Note: in the above cases we see that often VC-dim equals the number of parameters,
but it is not always the case. For example, for the class of functions mapping real number
x to sign(sin(ax)) with only one parameter a, its VC-dim is infinite.



Claim. Consider the finite H case, we have d = VC-dim(H) < lg|H]|.

Proof. For VC-dim of size d, there must exist a shattered set of size d, meaning there are
2¢ ways of labeling that set. For every labeling, there must be a corresponding hypothesis,
therefore we must have 2¢ < |H| for H to shatter it. O

1.1 Sauer’s Lemma

After introducing the concept of VC-dimension, we will now prove Sauer’s Lemma, which
shows that the growth function Il3(m) is of O(m?) when VC-dim(H) = d is finite.

Lemma. (Sauer’s Lemma). Let H be the hypothesis space, and d = VC-dim(H), then
My(m) < g(m) := L, (7)-

Note: Zg:o (T) is the number of ways of choosing at most d items from set of size m.
Some facts:

e (1) = m(mfl)'é!(mfkﬂ) = O(mF¥). This implies that ®4(m) = O(m?).
« (1) =2+ (")
e (})=0,if k<0ork>m.
Proof. By induction on m + d. First, check base case:
e m = 0, there is only one labeling possible, Iy (m) =1 = Z?:o (?) = d,4(0).
e d =0, there is only a single label possible for every point, I3 (m) =1 = (Tg) = Og(m).

When d > 1, m > 1, assume lemma holds Vd',m’, if m' + d' < m + d.

Fix aset S = (x1, -+, Zm), we want to show |II3(S)| < ®4(m). Next, we define H; and
Ho on S = (x1, -+ ,xm—1). Recall that II3(S) is the set of distinct labellings H induces
on S. Define H; to consist of the set of distinct labelings H induces on S’. Also, we add
the labeling to Ho whenever there is a “collapse” of labelings from 11y (.S) to Hi, i.e. when
there are two labelings in T4 (S) which are only different on z,,. A distinct labeling on S’
can be regarded as a hypothesis on S’

Illustration of constructing H1 and s is given in Figure 3. We can see that by restricting
on S" = (x1, 29,13, 24), we construct H; by including all the different labelings on S’. In
the construction, some pairs of labelings in II3(S) collapse into a single labeling in H;, for
example, from (0,1,1,0,0) and (0,1,1,0,1) to (0,1,1,0), causing us to add (0,1,1,0) to
Hs.

We have the observation that Iy (S)| = |H1i|+ |Hz2|. And we have the following claims:

Claim: VC-dim(H;)< d.

If T C S’ is shattered by H;, it is also shattered by H. We can see from the example in
Figure 3, {x1, x4} are shattered by #H; and therefore also shattered in ITy(.5).

Claim: VC-dim(H2)< d — 1.

If T C S’ is shattered by Ho, T'U {x,,} is shattered by H. In the example in Figure 3,
pick {x2} that is shattered by Ha, we observe that {xe, x5} are shattered by IIy(.5).
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Figure 3: An example of how H; and Hs are constructed
From the above two claims, we have |Hi| = [IIy, (S")] < ®g(m — 1) and |[Ha| =

T3, (S")| < ®4—1(m — 1). Therefore we have,

T3 (S)| = [Ha] + [Hz]

O]

Next, we will show an upper bound of ®4(m), which can be used to plug into the
Theorem mentioned in the beginning and derive generalization bound for H with finite
VC-dim d.

Claim. ®4(m) < (24)?, if m >d > 1.

Proof.

where (1) is because 0 < % < 1,7 < d and (2) comes from binomial expansion. We then
have ®q(m) < ()4, O



From Sauer’s lemma and the above claim, we know there are only two cases for the
growth function:

e VC-dim(H) = d, Iy (m) = O(m?).
o VC-dim(H) = oo, IIy(m) = 2™.

Plugging the result of Sauer’s Lemma into the Theorem mentioned at the beginning of the

dln% +1n §

class, we have

m

We can further turn it to a sample complexity bound (in other words, a bound on how
much data m is needed to get error €) that is linear in d, i.e. VC-dim(H).



