
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Evan Cofer February 12, 2018

1 Probably Approximately Correct (PAC) Learning

We say that a concept class C is PAC-learnable by a hypothesis space H if there exists
an algorithm A such that for every target concept c ∈ C, every ε > 0, δ > 0, and any
target distribution D, A requires a sequence S = 〈(x1, c(x1)) , (x2, c(x2)) ..., (xm, c(xm))〉 of
m = poly

(
1
ε ,

1
δ , ...

)
examples where each xi is chosen independently from D to produce a

hypothesis h ∈ H for which Pr [errD(h) ≤ ε] ≥ 1 − δ holds. Importantly, D can be any
distribution, so the PAC-learning model is considered to be a “distribution free” model.
The variable δ > 0 is used to define the confidence 1− δ, and ε > 0, defines the error. The
sample size m is allowed to get larger as ε and δ are made smaller since, for an algorithm to
have greater accuracy (smaller ε) or greater confidence (smaller δ), it will typically require
a greater amount of data. Finally, we say that C is efficiently PAC-learnable if A runs in
poly

(
1
ε ,

1
δ , ...

)
time.

2 Learning positive half-lines

We turn now to an example of a PAC-learnable concept class. Specifically, we consider the
concept class of positive half-lines. A positive half-line is a ray extending rightwards (i.e.
towards +∞) from some real-valued point. All values to the right of this point are labeled
positive. Values to the left are labeled negative. For terseness, we denote both the concept
and threshold with c. For this example, our domain X = R, and our hypothesis space and
concept class are the set of positive half lines, i.e. H = C = {positive half-lines}.

c

+ + + + + +−−−−−

Figure 1: The target concept c is shown on a number line.

One approach for choosing a hypothesis would be to take the arithmetic mean of the
largest negative example seen and smallest positive example seen. Any value between the
two aforementioned extremes would be a consistent hypothesis. We show an example of
such a hypothesis in Figure 2 below.

h

+ + + + + +−−−−−

Figure 2: The hypothesis h is shown on a number line.

Only points outside of [c, h], the “error region”, will be properly labeled by h. Since
∀x ∈ [c, h], c(x) 6= h(x) holds, errD(h) will be the probability mass in [c, h]. We provide a
visualization of this in Figure 3.

c h

+ + + + + +−−−−−
Error region

Figure 3: The target concept c and a hypothesis h are shown on a number line. The
probability mass in the region [c, h] is the error.

We herein refer to h with error greater than ε as being “ε-bad”. PAC-learning can also
be phrased as requiring h to be ε-good (i.e. not ε-bad) with probability at least 1− δ. If h
is too far to the left or right of c, then our error will be too high, and greater than ε. We
illustrate these bad cases in Figure 4 below, where it is immediately apparent that they are
symmetric scenarios. We must show that, in most cases, this does not happen. That is, we
must show Pr [errD(h) > ε] ≤ δ.

B+ :

c h′′

> ε

B− :

ch′

> ε

Figure 4: The target concept c and two examples of bad events B− and B+, with hypotheses
h′ and h′′ respectively.

Now, we consider the probability of B+. Imagine the point found by sweeping out from
c until the probability mass is exactly ε. We call this point r+, and the region [c, r+] as R+.
A visual is presented in Figure 5.

c r+

= ε

R+

Figure 5: The region R+ for which the probability mass is ε.

Clearly, if one training example were to fall into R+, then h < r+, the error will be less
than ε, and B+ does not occur. Thus, the probability of B+ is at most the probability that
no point lands in [c, r+]. A single point x1 falls into R+ with probability ε, so Pr [x1 6∈ R+] =
1− ε as well. As all the points are independent and identically distributed (i.i.d.), it follows

2

that

Pr [x1 6∈ R+ ∧ x2 6∈ R+ ∧ ... ∧ xm 6∈ R+]

= Pr [x1 6∈ R+] · Pr [x2 6∈ R+] · ... · Pr [xm 6∈ R+]

= (1− ε)m

As such, the probability of B+ is at most the probability of all of these, or Pr [B+] ≤
(1 − ε)m. Recall that there are two symmetric events, B+ and B−. By the union bound
we know that Pr [B+ ∨B−] ≤ Pr [B+] + Pr [B−], and so Pr [B+ ∨B−] ≤ 2 (1− ε)m. As
∀x, 1+x ≤ ex, we get Pr [B+ ∨B−] ≤ 2e−εm, which we would like to be δ at most. To satisfy
this requirement, it must be that m ≥ 1

ε ln 2
δ . Recall that Pr [errD(h) > ε] = Pr [B+ ∨B−],

and so Pr [errD(h) > ε] ≤ δ if m ≥ 1
ε ln 2

δ . We have shown that C is PAC-learnable by H.
�

3 Learning intervals

We now consider the concept class C = {intervals on R}, and again let C = H. As shown
below in Figure 6, a target concept c ∈ C is an interval [cL, cR] where cL, cR ∈ R. All values
that fall within the interval are labeled positive. All other values are labeled negative. Our
algorithm A must find a hypothesis h ∈ H, and this can be done in a similar manner as in
the previous example. The proof that A is PAC-learnable by H is also similar.

ch

− − − − −−−−− ++ + +

Figure 6: The target concept c and the hypothesis h are shown on a number line.

We sweep out an interval with probability mass ε
2 on either side of cL, and again for cR.

The two cases are symmetric. Clearly, the case of cL is the same as the case of the positive
half-line shown above, and the same can be said for cR. Although the PAC-learnability of
A by H is within reach, we leave its proof as an exercise for the reader.

4 Learning axis-aligned rectangles

Finally, we consider the concept class C = {axis-aligned rectangles} where H = C again.
We now want an algorithm A that finds the smallest consistent rectangle h ∈ H. A visual
is presented below in Figure 7.

We now create four bands within c along the top, right, bottom, and left edges. We
specify that each band has probability mass of exactly ε

4 , as seen in Figure 8. If at least
one point falls into each band, then h will be ε-good. There are four bad events, each
corresponding to a point not falling into each of the four bands. The probability that h is
ε-good is the probability that at least one point falls into each of the bands. It is apparent
that this is a similar argument to the previous examples.

3

c
h

−

−

−

−
−

−

−

−

− −

−

−

−

−

−
+

+

+

+

+

Figure 7: The target concept c and the hypothesis h, both in R2, are shown.

ε
4

ε
4

ε
4

ε
4

c

Figure 8: The target concept c shown with four error regions, each having probability mass
of ε

4 . It does not matter that these regions overlap.

5 General proof of PAC learnability for finite |H|
Thus far, we have only considered proofs of PAC-learnability for very specific cases. This is
a very ad hoc and inefficient manner of proving things. We are also interested in knowing
when consistency is sufficient for learning in a general model (e.g. PAC-learning). We turn
now to a theorem of PAC-learnability for hypothesis spaces of finite cardinality.

Theorem 1 Suppose algorithm A finds hypothesis hA ∈ H consistent with m examples
where m ≥ 1

ε

(
ln|H|+ ln 1

δ

)
. Then Pr [errD(hA) > ε] ≤ δ.

Note that this theorem does not directly involve a concept class C at all, but does apply
whenever we manage to find a consistent hypothesis. We can rephrase it as follows: with

probability of at least 1− δ, if hA ∈ H is consistent, then errD(hA) ≤ ln|H|+ln 1
δ

m .
This new term, ln|H| is interesting, and it is related to a notion of complexity or how

“not simple” our hypothesis is. Specifically, it is a measure of the complexity of H. When
the base for this logarithm is 2, the term is the number of bits needed to write names for
each hypothesis h ∈ H. We can also think of ln|H| as a measure of the description length
of the hypotheses in H. Importantly, this speaks only to the complexity of H, not the
individual hypotheses.

4

To explore this more, Dr. Schapire asked students to consider the problem of determining
binary labels (i.e. 0 or 1) for the set of integers {1, 2, ..., 30}. After everyone wrote down
binary labels for {1, 2, ..., 30}, Dr. Schapire divided the examples into two sets: {1, 2, ..., 10}
for the training data, and {11, 12, ..., 20} for the test data. The student hypothesis with
the lowest training error had a training error of 20%, but a testing error of 40%. However,
unbeknownst to the class, the proper labels had been generated by coin flips. As such,
even hypotheses with low training error are expected to mislabel half of the test examples.
When the hypothesis space grows, so too does the probability of finding a hypothesis that
performs well on the training data by chance. However, such hypotheses will still have an
expected test error of 50%. This means that larger hypothesis spaces will require more
training data to avoid these bad hypotheses that only have low training error by chance.

5.1 Monotone conjunctions

We consider C = {monotone conjunctions of length n}. Again, we let C = H. As each h
either includes or excludes a given variable, there are 2n hypothesis and |H| = 2n. From
previous lectures, we know of an algorithm A that finds a consistent hypothesis h ∈ H. By
Theorem 1, m ≥ 1

ε

(
n ln 2 + ln 1

δ

)
implies Pr [errD(hA) > ε] ≤ δ. This is polynomial w.r.t.

n, 1
ε ,

1
δ . We have shown monotone conjunctions to be PAC-learnable. �

5

