1 Probably Approximately Correct (PAC) Learning

We say that a concept class \(\mathcal{C} \) is PAC-learnable by a hypothesis space \(\mathcal{H} \) if there exists an algorithm \(A \) such that for every concept \(c \in \mathcal{C} \), every \(\epsilon > 0 \), \(\delta > 0 \), and any distribution \(D \), \(A \) requires a sequence \(S = \langle (x_1, c(x_1)), (x_2, c(x_2)), \ldots, (x_m, c(x_m)) \rangle \) of \(m = \text{poly} \left(\frac{1}{\epsilon}, \frac{1}{\delta}, \ldots \right) \) examples drawn i.i.d. from \(D \) to produce a hypothesis \(h \in \mathcal{H} \) for which \(\Pr \left[\text{err}_D(h) \leq \epsilon \right] \geq 1 - \delta \) holds. Importantly, the \(D \) can be any distribution, so the PAC-learning model is considered to be a “distribution free” model. The variable \(\delta > 0 \) is used to define the confidence \(1 - \delta \), and \(\epsilon > 0 \), defines the error. Finally, we say that \(\mathcal{C} \) is efficiently PAC-learnable if \(A \) runs in \(O \left(\text{poly} \left(\frac{1}{\epsilon}, \frac{1}{\delta}, \ldots \right) \right) \) time.

2 Learning positive half-lines

We turn now to an example of a PAC-learnable concept class. Specifically, we consider the concept class of positive half-lines. A positive half-line is a ray extending rightwards (i.e. towards \(+\infty \)) from some real-valued point. All values to the right of this point are labeled positive. Values to the left are labeled negative. For terseness, we denote both the concept and threshold with \(c \). For this example, our domain \(X = \mathbb{R} \), and our hypothesis space and concept class are the set of positive half lines, i.e. \(\mathcal{H} = \mathcal{C} = \{ \text{positive half-lines} \} \).

One approach for choosing a hypothesis would be to take the arithmetic mean of the largest negative example seen and smallest positive example seen. Any value between the two aforementioned extremes would be a consistent hypothesis. We show an example of such a hypothesis in Figure 2 below.

```
- - - - - + + + + + +
```

\(c \)

Figure 1: The target concept \(c \) is shown on a number line.

One approach for choosing a hypothesis would be to take the arithmetic mean of the largest negative example seen and smallest positive example seen. Any value between the two aforementioned extremes would be a consistent hypothesis. We show an example of such a hypothesis in Figure 2 below.

```
- - - - - + + + + + +
```

\(h \)

Figure 2: The hypothesis \(h \) is shown on a number line.

Only points outside of \([c, h] \), the “error region”, will be properly labeled by \(h \). Since \(\forall x \in [c, h], c(x) \neq h(x) \) holds, \(\text{err}_D(h) \) will be the probability mass in \([c, h] \). We provide a visualization of this in Figure 3.
Figure 3: The target concept c and a hypothesis h are shown on a number line. The probability mass in the region $[c, h]$ is the error.

If h is too far to the left or right of c, then our error will be too high, and greater than ϵ. We herein refer to h with error greater than ϵ as being “ϵ-bad”. This can also be interpreted as h being “ϵ-good” with some probability of at least $1 - \delta$. We illustrate these bad cases in Figure 4 below, where it is immediately apparent that they are symmetric scenarios. We must show that, in most cases, this does not happen. That is, we must show $\Pr[\text{err}_D(h) > \epsilon] \leq \delta$.

Figure 4: The target concept c and two examples of bad events B_- and B_+, with hypotheses h' and h'' respectively.

Now, we consider the likelihood of B_+. Imagine the point found by sweeping out from c until the probability mass is ϵ. We call this point r_+, and the region $[c, r_+]$ as R_+. A visual is presented in Figure 5.

Figure 5: The region R_+ for which the probability mass is ϵ.

Clearly, if one training example were to fall into R_+, then $h < r_+$, the error will be less than ϵ, and B_+ does not occur. Thus, the probability of B_+ is at most the probability that no point lands in $[c, r_+]$. A single point x_1 falls into R_+ is with likelihood ϵ, so $\Pr[x_1 \notin R_+] = 1 - \epsilon$ as well. As all the points are i.i.d., it follows that

$$\Pr[x_1 \notin R_+ \land x_2 \notin R_+ \land ... x_m \notin R_+] = \Pr[x_1 \notin R_+] \cdot \Pr[x_2 \notin R_+] \cdot ... \cdot \Pr[x_m \notin R_+] = (1 - \epsilon)^m$$
As such, the probability of B_+ is at most the probability of all of these, or $\Pr[B_+] \leq (1 - \epsilon)^m$. Recall that there are two symmetric events, B_+ and B_-. By the union bound we know that $\Pr[B_+ \wedge B_-] \leq \Pr[B_+] + \Pr[B_-]$, and so $\Pr[B_+ \wedge B_-] \leq 2(1 - \epsilon)^m$. As $\forall x, Hx \leq e^x$, we get $\Pr[B_+ \vee B_-] \leq 2e^{-\epsilon m}$, which we would like to be δ at most. To satisfy this requirement, it must be that $m \geq \frac{\ln \frac{1}{\epsilon}}{\epsilon}$. Recall that $\Pr[err_D(h) > \epsilon] = \Pr[B_+ \vee B_-]$, and so $\Pr[err_D(h) > \epsilon] \leq \delta$ if $m \geq \frac{\ln \frac{1}{\delta}}{\epsilon}$. We have shown that C is PAC-learnable by \mathcal{H}.

3 Learning intervals

We now consider the concept class $C = \{\text{intervals on } \mathbb{R}\}$, and again let $\mathcal{C} = \mathcal{H}$. As shown below in Figure 6, a concept $c \in C$ is an interval $[c_L, c_R]$ where $c_L, c_R \in \mathbb{R}$. All values that fall on the line are labeled positive. All other values are labeled negative. Our algorithm \mathcal{A} must find a hypothesis $h \in \mathcal{H}$, and this can be done in a similar manner as in the previous example. The proof that \mathcal{A} is PAC-learnable by \mathcal{H} is also similar.

![Figure 6: The target concept c and the hypothesis h are shown on a number line.](image)

We sweep out an interval with probability mass $\frac{1}{\epsilon}$ on either side of c_L, and again for c_R. The two cases are symmetric. Clearly, the case of c_L is the same as the case of the positive half-line shown above, and the same can be said for c_R. Although the PAC-learnability of \mathcal{A} by \mathcal{H} is within reach, we leave its proof as an exercise for the reader.

4 Learning axis-aligned rectangles

Finally, we consider the concept class $C = \{\text{axis-aligned rectangles}\}$ where $\mathcal{H} = \mathcal{C}$ again. We now want an algorithm \mathcal{A} that finds the smallest consistent rectangle $h \in \mathcal{H}$. A visual is presented below in Figure 7.

We now divide the set $c \setminus h$ into four rectangles, each with probability mass of at most $\frac{1}{\epsilon}$, as seen in Figure 8. This is a similar argument to the previous examples, but with an area. We then argue that at if at least one point falls in any of these rectangles, no bad event will occur. For a bad event to occur, it must be that no points occur in any of the four rectangles.

5 General proof of PAC learnability for finite $|\mathcal{H}|$

Thus far, we have only considered proofs of PAC-learnability for very specific cases. This is a very ad hoc and inefficient manner of proving things. We are also interested in knowing when consistency is sufficient for learning in a real model (e.g., PAC-learning). We turn now to a theorem of PAC-learnability for hypothesis spaces of finite cardinality.

Theorem 1 Suppose algorithm \mathcal{A} finds hypothesis $h_A \in \mathcal{H}$ consistent with m examples where $m \geq \frac{\ln |\mathcal{H}|}{\epsilon} + \frac{\ln \frac{1}{\delta}}{\epsilon}$. Then $\Pr[err_D(h_A) > \epsilon] \leq \delta$.

3
The target concept c and the hypothesis h, both in \mathbb{R}^2, are shown.

The hypothesis h and concept c shown with four error regions, each having probability mass of $\frac{1}{\epsilon}$. It does not matter that these regions overlap.

Note that this theorem does not directly involve a concept class C at all, but does apply whenever we manage to find a consistent hypothesis. We can rephrase it as follows: with probability of at least $1 - \delta$, if $h_A \in H$ is consistent, then $\text{err}_D \leq \frac{\ln |H| + \ln \frac{1}{\delta}}{m} $.

This new term, $\ln |H|$ is interesting, and it is related to a notion of complexity or how “not simple” our learning task is. Specifically, it is a measure of the complexity of H. When the base for this logarithm is 2, the term is the number of bits needed to write names for each hypothesis $h \in H$. Importantly, this speaks only to the complexity of H, not the individual hypotheses.

5.1 Monotone conjunctions

We consider $C = \{\text{monotone conjunctions of length } n\}$. Again, we let $C = H$. As each h either includes or excludes a given variable, there are 2^n hypothesis and $|H| = 2^n$. From previous lectures, we know of an algorithm A that finds a consistent hypothesis $h \in H$. By Theorem 1, $m \geq \frac{1}{\epsilon} \left(n \ln 2 + \ln \frac{1}{\delta} \right)$ implies $\Pr[\text{err}_D(h_A) > \epsilon] \leq \delta$. This is polynomial w.r.t. $n, \frac{1}{\epsilon}, \frac{1}{\delta}$. We have shown monotone conjunctions to be PAC-learnable.