
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #2
Scribe: Cathy Chen February 07, 2018

1 Examples of Learning with the Consistency Model

We start by looking at some examples of algorithms that can find a consistent concept from
a specified concept class that is consistent with a given dataset (or reports that no such
concept exists).

1.1 Monotone Conjunctions

Problem: In our first example, we assume that the domain is X = {0, 1}n. In this case,
each example is a bit vector x = (x1, ..., xn) where xi ∈ {0, 1}. Our concept class is the
set of monotone conjunctions. This is the set of functions defined as the AND of some
variables, none of which are negated. For instance, c(x) = x2 ∧ x3 ∧ x7 is a valid monotone
conjunction.

Algorithm: We could use the following algorithm to solve this problem. We consider
all the positive examples, and find the indices containing 1 for each training example. We
propose the concept consisting of the AND of these indices. If this concept returns 0 for each
negative example, we return the concept. If it does not, then we state that no consistent
concept exists.

Example: For instance, we might receive the following dataset.
01101 +
11011 +
11001 +
00101 -
11000 -

Since the indices x2 and x5 contain 1 for each positive example, we propose x2 ∧ x5 as
our concept. This concept rejects each negative training example, so it is consistent with
our dataset.

Note: If any consistent concept exists for this dataset in our concept class, this algorithm
finds it. Any valid concept must return 1 for all positive examples and 0 for all negative
examples. Since the algorithm proposes the concept that ANDs every index which is positive
for all train examples, any valid concept must be a subset of the algorithm’s chosen subset.
Therefore if a valid concept returns 0 on all negative examples, so does the algorithm’s
proposed concept.

1.2 Reductions to Monotone Conjunctions

In the following examples, we consider concept classes that reduce to the class of monotone
conjunctions. We continue to assume X = {0, 1}n.

1.2.1 Disjunctions

In this example, our concept class is the set of disjunctions: concepts defined as the OR of
non-negated variables. Using De Morgan’s law that xi ∨ xj = x̄i ∧ x̄j , we can reduce this



example to finding a monotone conjunction by flipping the label and bits of each training
example. For instance, x2 ∨ x5 is equivalent to x̄2 ∧ x̄5. If x2 ∨ x5 is a consistent concept
in the class of disjunctions, we could find it by finding the conjunction x̄2 ∧ x̄5 that is
consistent with the dataset formed by flipping the label and bits of each training example
in the dataset.

1.2.2 Conjunctions

Our concept class is the set of all conjunctions. We reduce this to finding a monotone
conjunction by forming a new dataset. We form zi by negating each bit of the original
example xi; we then concatenate xi and zi to form the corresponding example in the new
dataset. For instance, 1101 would map to 11010010 in our new dataset.

1.2.3 k-CNF

Our concept class is the set of k-CNFs, which is the AND of ORed clauses, each of which
contains at most k terms. For instance, (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) is a 3-CNF consisting of
two clauses. We assume that k is a small number. We reduce this to finding a monotone
conjunction by creating a dummy variable for each possible conjunction.

Note: Although this algorithm is O(nk), where n is the number of bits in each example,
our assumption that k is small makes it okay.

1.2.4 2-term DNF

Our concept class is the set of 2-term DNFs. These are functions defined by the OR of two
clauses, in which each clause ANDs together any number of variables. This is an NP-hard
problem, which is interesting because using boolean algebra we can write a 2-tern DNF
as a 2-CNF. But even though we solve 1.2.3 in polynomial time, finding a 2-term DNF is
NP-hard.

1.2.5 DNF

Our concept class is the set of all DNFs, which are the OR of AND clauses. To solve this
we first can form a conjunction for each positive example, where the conjunction is true
only for the corresponding example, and OR all these conjunctions together.

But this creates solutions that are long and not particularly elegant. And it feels too
easy to count as “learning”.

1.3 Set-based Concept Classes

In the previous examples, we considered concept classes consisting of functions. In the
following examples, we consider concept classes consisting of sets.

1.3.1 Axis-Aligned Rectangles

We assume the domain X = R2, and a concept class consisting of all axis-aligned rectangles.
We want to find a rectangle such that all positive examples fall inside the rectangle, and
all negative examples fall outside it. To find a consistent example, we can choose the
leftmost, rightmost, topmost, and bottommost positive examples and draw the smallest

2



possible rectangle including these points. If any negative examples fall inside this rectangle,
we state that no consistent concept exists.

1.3.2 Linear Threshold Functions

In this example, we assume the domain X = Rn, and a concept class consisting of all linear
threshold functions. A consistent concept w · x = b must have the property that w · xi > b
for all positive examples xi, and w ·xi < b for all negative examples. We can formulate this
as a linear program, so we could solve this problem by throwing it into a linear program
solver. Other methods of solving this problem will come later.

1.4 Analysis of Consistency Model

In the previous subsections we see that this learning model does not explicitly encourage
an algorithm that generalizes past the examples it sees, and our solutions don’t seem to
qualify as “learning”. Also, the algorithms don’t allow for noise in the data. This motivates
our next learning model, but first we review some definitions from probability.

2 Review of Probability Terminology

An event is a probabilistic outcome, such as a coin flip resulting in “heads”. A random
variable is a variable that takes possible values, such as a variable representing the outcome
of a die roll. A distribution is a function Pr[X = x] such that for all x,

Pr[X = x] ≥ 0∑
x

Pr[X = x] = 1

. The expected value of a random variable X is defined as∑
x

Pr[X = x]x

. Expected value has the properties that

E[f(X)] =
∑
x

Pr[X = x]f(x)

E[X + Y ] = E[X] + E[Y ] (linearity of expectation)

E[cX] = cE[X]

. We define conditional probability as

Pr[a|b] =
Pr[a ∧ b]

Pr[b]

. We say that a and b are independent if knowing about one doesn’t tell you more about the
other: Pr[a|b] = Pr[a] (or, equivalently, Pr[a ∧ b] = Pr[a]Pr[b]). We say that two random
variables X and Y are independent if ∀x, y, the events X = x and Y = y are independent.
If this is true, then E[XY ] = E[X]E[Y ].

3



3 PAC Model

As we note in section 1.4, the consistency model leaves something to be desired. Therefore
we look at another learning model.

First, we define the rule outputted by a learning algorithm as the hypothesis h, and
we make three assumptions. First, we assume that each training example is chosen inde-
pendently at random from an unknown, fixed, arbitrary target distribution D. We assume
that our test examples are selected in the same way, and we assume that the examples are
labeled according to a target concept c : X → {0, 1} that is unknown but inside the concept
class C we consider.

To evaluate a hypothesis h, we define the error of h with respect to a distribution D as
errh(D) = Prx∼D[h(x) 6= c(x)] which is the probability that h misclassifies a random test
example x.

We want to find a hypothesis with small error on the test set; that is, we want a hypoth-
esis that is “approximately correct”. Since our training examples are chosen at random, it’s
possible that we have really bad luck and the training examples are extraordinarily skewed
in some way; to account for this we look for something that is “probably approximately
correct”, meaning that with high probability over the choice of the training set, we want the
hypothesis to be approximately correct. Therefore, we look to the probably approximately
correct learning model.

4


